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Abstract

A differential quadrature (DQ) methodology recently developed by the authors is used to obtain a
general and a computationally efficient and accurate DQ solution for free vibration of variable cross-
section circular thin arches. As an improvement to the classical theory and in order to evaluate the higher
order natural frequencies more accurately, the commonly used hypothesis of ‘‘the inextensibility of the
central axis’’ is removed. This enables one to study the effects of slenderness ratio on the natural
frequencies, especially at higher order modes. Rotary inertia is included in the formulation and its influence
on natural frequencies is studied. Arches with different types of boundary conditions, including those with
elastic constraint against rotation at their ends, are considered. For the cases where a change in the cross-
sectional or material properties of the arch occurs, a numerical domain decomposition technique in
conjunction with DQ methodology is developed and incorporated. To verify the accuracy of the
methodology, the results are compared with those of exact solutions and/or other approaches such as finite
elements, Rayleigh–Ritz, Galerkin, cell discretization methods, and other DQ methodologies. In particular,
excellent solution agreements are achieved with those of exact solutions, the generalized differential
quadrature rule and the optimized Rayleigh–Ritz method solutions.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Due to practical importance of circular arches, many researchers have studied static as well
dynamic behavior of such elements. The numerical simulations are mostly based on finite
elements, Rayleigh–Ritz, Galerkin, and cell discretization methods. A review on the different
methods of analysis for circular arches has been recently presented by Auciello and De Rosa [1].
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Tong et al. [2] have used the exact solution of inextensible thin uniform circular arches to study
the in-plane free and forced vibration of circular arches with stepped cross-sections. As a
consequence, they have used their method to obtain an approximate solution for arches with non-
uniform cross-sections.
Basically, the governing equations of the thin arches include fourth and second order partial

differential equations (PDEs). In most studies in order to simplify the system of equations, an
additional assumption of the inextensibility (or incompressibility) of the centroidal axes has been
employed. Using this assumption, the two-coupled partial differential governing equations are
reduced to a sixth order partial differential equation. However, in order to improve the accuracy
of natural frequency evaluations, especially at higher order modes, it is suggested that axial
deformation should be accounted for [3,4]. As an alternative simplifying assumption for
inextensible arches, one may neglect the effect of tangential inertias [5,6]. This approach which is
called ‘‘approximate theory’’ after De Rosa and Franciosi [6] may be employed only for shallow
arches in conjunction with the inextensible centroidal axes assumption [5,6].
In this paper, a DQ method is used to solve the basic governing equations of thin circular arches

comprising both radial as well as tangential displacements as field variables. The slenderness ratio
as a design parameter would thus be introduced in the governing equations. Arbitrary variable
cross-section arches with a system of PDEs having variable coefficients are considered. Closed
form solutions to such a system of PDEs do not exist. The efforts here are focused to develop a
DQ solution for such a system of equations to reduce the amount of computations, and also to
provide a general and simpler numerical DQ scheme. It is a known fact that the difficulty in
implementing multiple boundary conditions of a field variable is a draw back in conventional DQ
methods [7]. Here, a recently developed DQ methodology [8,9] is to be employed to implement the
multiple boundary conditions at boundary points in a more efficient manner. The applicability of
this DQ methodology has been tested for beam elements [8] and for rectangular plates of any
classical and some non-classical boundary conditions, such as a plate with point supports [9].
Excellent results have been achieved for all cases, and especially for those cases that conventional
DQ methods have not yielded a converged solution or have resulted to low accuracy solutions.
The efficiency of this methodology was further demonstrated in another application for the
quadrilateral straight-sided plates [10]. The present study however differs from the previous
studies due to the fact that here, unlike in previous cases, a system of equations constructed from
second and fourth order PDEs with variable coefficients have to be solved. In the ongoing study,
any type of classical boundary conditions for arches is to be considered. In addition, non-classical
boundary condition type of elastically restrained against rotation would also be incorporated. To
account for any changes in geometrical and/or material properties a special domain
decomposition technique is developed. Examples are solved to verify the implementation. To
verify the accuracy, the results for extensible and inextensible arches and also the results based on
the approximate theory are compared with those of exact and other methods and in special cases
with other DQ methods.
In DQM applications to arches, Gutierrez and Laura [11] have used DQ in conjunction with the

d-technique to obtain the fundamental natural frequency of continuously variable section ring
type arches. They have used inextensible theory to investigate simply supported and completely
free arches. Kang et al. [12] have also used the same procedure to study both extensible and
inextensible uniform cross-sectional circular arches. They have obtained the fundamental natural
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frequencies for arches with simply supported and clamped boundary conditions. Using the same
method, the effects of warping have been considered in another effort by Kang et al. [13]. Kang
and co-workers have also considered the free vibration of shear deformable arches [14]. De Rosa
and Franciosi [6] have used a DQ method to study inextensible, uniform circular arches with
clamped, simply supported and clamped–free boundary conditions. More recently Liu and Wu
[15] have used the generalized differential quadrature rule to study the free vibration of
inextensible circular arches. Variable cross-section arches under different types of classical
boundary conditions have been examined. They have reported the natural frequencies up to only
the second mode.
One point to be noted here is that by considering the governing equations of extensible arches,

other DQ methods, which employ the first order derivative as a degree of freedom [6,15], require
more effort for implementation of boundary conditions. This is because the weighting coefficients
in such cases depend on the order of governing PDEs and one cannot use the weighting
coefficients of fourth order PDEs for second order PDEs. Therefore, for the problem under
consideration, one should evaluate two sets of weighting coefficients, which increases the
computational effort. In the analysis, the generalized differential quadrature rule (GDQR) is used
as a computationally efficient technique for evaluation of weighting coefficients. It should be
mentioned that Liew and Liu [16], Liew et al. [17] and Du et al. [18] have used GDQR for free
vibration analysis of shear-deformable annular sector plates and cross-ply laminates, and also for
the buckling analysis of classical beams and plates.

2. DQM formulations and implementations

2.1. Governing equations of arches

Consider a thin variable section arch as shown in Fig. 1. A material point on the centroidal axis
of the undeformed arch is located by angle y as shown in Fig. 1. The radius of curvature of the
centroidal axis is denoted by R; the opening angle by yo; and the radial and tangential
displacements of a material point on the centroidal axis by u and w; respectively.
Governing equations for such an arch, which include the effects of axial deformation and

rotary inertia can be derived from the principle of total potential energy in a systematic
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manner as
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In the above equations each prime denotes one differentiation with respect to dimensionless
coordinate variable x ð¼ y=yoÞ: The variables R; A and I are the curvature radius, cross-sectional
area, and second area moment of inertia of the section of arch and E; r; o are Young’s modulus,
density and natural frequency of the arch, respectively. In order to simplify the analysis, the
following parameters are introduced:

AðxÞ ¼ AoaðxÞ; IðxÞ ¼ IoHðxÞ; Sr ¼ Ryo=k; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Io=Ao

p
; l2 ¼ o2

rR4

EIo

� �
;

where Sr represents the slenderness ratio of the arch, k is the radius of gyration and l and o are
the non-dimensional natural frequency and natural frequency, respectively. By introducing these
parameters, one can rewrite governing equations (1) and (2) as
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2.2. DQ analogues of governing equations

In order to construct the DQ analogues of the governing equations, one must define the degrees
of freedom for the problem under consideration. For the present DQ methodology, the boundary
degrees of freedom are displacements ðu;wÞ and the second derivative of the radial displacement
K ð¼ d2u=dx2Þ: Whereas on the interior domain, only the displacement components ðu;wÞ are
chosen as degrees of freedom [8–10]. That is

fUbg ¼ ½u1 uN w1 wN K1 KN �T; fUdg ¼ ½½u2yuN�1� ½w2ywN�1��T: ð5Þ

The subscripts b and d stand for boundary and interior domain degrees of freedom, respectively.
Subscripts 1; 2;y;N � 1; N are grid point numbers. Thus, the grid points 1 and N represent the
grid at the ends of the arch where boundary conditions apply.
Two important factors that affect the accuracy of the DQ method are the accuracy of weighting

coefficients and the choice of sampling points. Employing the present definitions for the degrees of
freedom, no special treatments are needed to evaluate the weighting coefficients. This is not the
case for other DQ methods such as those that employ the first order derivative as a field variable
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on the boundary. In the present analysis, an explicit algorithm is used. The algorithm is
computationally efficient and yields the weighting coefficients most accurately, irrespective of the
number and positions of sampling points [7]. In addition, there are no restrictions on the location
of sampling points, and any grid generation rule for conventional DQ methods can be used for
locating the sampling points. The description of how to evaluate the weighting coefficients is given
in Appendix A.
Based on the choice of degrees of freedom the DQ analogues of the governing equations (3) and

(4) becomes, respectively,
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for i ¼ 1; 2;y;N; where N is the number of grid points. Eqs. (6) and (7) can be assembled in
matrix form as

½½Sdb� ½Sdd ��
fUbg

fUdg

( )
� l2½½Mdb� ½Mdd ��

fUbg

fUdg

( )
¼ f0g: ð8Þ

Using the definition of boundary and domain degrees of freedom, i.e., Eq. (5), the elements of
matrix coefficients in the above equation can be easily derived.

2.3. Boundary conditions

Some important types of boundary conditions that may be applied to a circular arch include the
following.

2.3.1. Elastically restrained against rotation (SR)
For this type of boundary condition the displacement components are fixed and the

bending moment is balanced by bending moment produced by an elastic torsional spring at
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the support:

w ¼ 0; u ¼ 0;
EI

R

d2u

dy2
þ ktnb

du

dy
¼ 0; ð9Þ

where nb ¼ �1 for y ¼ 0 and nb ¼ 1 for y ¼ yo; kt is the elastic coefficient of support.

2.3.2. Clamped ðCÞ

w ¼ 0; u ¼ 0;
du

dy
¼ 0: ð10Þ

2.3.3. Transversally guided support ðGÞ
An end with this type of boundary condition has fixed tangential and rotational degrees of

freedom. The radial displacement has no constraint and therefore one has

w ¼ 0;
du

dy
¼ 0; EI

d3u

dy3
þ
dðEIÞ
dy

� �
d2u

dy2
þ u

� �
¼ 0: ð11Þ

2.3.4. Free end ðF Þ
Since no constraints are present for any movement at the arch ends, no reaction forces, i.e.,

axial force, shear force and bending moment, will be produced:

dw

dy
� u ¼ 0; EI

d3u

dy3
þ
du

dy

� �
þ
dðEIÞ
dy

d2u

dy2
þ u

� �
¼ 0;

d2u

dy2
þ u ¼ 0: ð12Þ

2.4. DQ analogues of boundary conditions

Similar to the governing equations, the DQ analogues of the boundary conditions are
developed.

2.4.1. Zero displacement

wb ¼ 0; ub ¼ 0 for b ¼ 1 or N: ð13Þ

2.4.2. Zero slope
The zero slope boundary conditions are implemented through the curvature as [8–10]

Kb �
XN

n¼1

Xmu

m¼ml

AbmAmnun ¼ 0 for b ¼ 1 or N; ð14Þ

where ml ¼ 2 if the end at y ¼ 0 is clamped, otherwise it is equal to 1; also mu ¼ N � 1 if the end
at y ¼ yo is clamped, otherwise it is set to N:
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2.4.3. Bending moment

The DQ analogues of a zero bending moment boundary condition and that which is balanced
with the moment of an elastic spring at a boundary point, can be explained by an equation in the
form of

HbKb þ y2oub þ nbyoKbT

XN

m¼1

Abmum ¼ 0 for b ¼ 1 or N; ð15Þ

where KbT ¼ kbtR=ðEIoÞ:

2.4.4. Zero axial force

XN

m¼1

Abmwm � you ¼ 0 for b ¼ 1 or N: ð16Þ

2.4.5. Zero shear force

Hb

XN

n¼1

XN�1

m¼2

AbmBmnun þ y2o
XN

m¼1

Abmum

 !
þ HbAb1K1

þ HbAbNKN þ H 0
bðKb þ y2oubÞ ¼ 0 ð17Þ

for b ¼ 1 or N: The assembled form of the boundary conditions can also be represented in matrix
form as

½Sbb�fUgb þ ½Sbd �fUgd ¼ f0g: ð18Þ

Eliminating the boundary degrees of freedom from Eqs. (8) and (18) one has

½S�fUdg � l2½M�fUdg ¼ f0g; ð19Þ

where ½S� ¼ ½Sdd � � ½Sdb�½Sbb��1½Sbd � and ½M� ¼ ½Mdd � � ½Mdb�½Sbb��1½Sbd �: From Eq. (19), one can
obtain both the natural frequencies and the associated mode shapes.

3. The approximate theory

As an alternative to the previously developed general governing equations of thin arches, an
‘‘approximate theory,’’ based on assuming negligible tangential inertias can be developed. After
matrix partitioning of Eq. (19), the final system of equations for thin circular arches based on this
approximate theory may be written as

½Suu� ½Suw�

½Swu� ½Sww�

" #
fUdug

fUdwg

( )
� l2

½Muu� 0

0 0

" #
fUdug

fUdwg

( )
¼ f0g: ð20Þ

Using this equation, one can easily eliminate the tangential displacement components and
obtain the simplified governing equation as

½ %S�fUdug � l2½Muu�fUdug ¼ f0g; ð21Þ
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where ½ %S� ¼ ½Suu� � ½Suw�½Sww��1½Swu�: As one can expect, the slenderness ratio that appears in
governing Eq. (21) should be taken very large ðSrX10

4Þ; since the formulation is based on
extensible theory. Some examples for both shallow and deep arches are considered to prove the
accuracy of this formulation.

4. Domain decomposition technique

When the coefficients in the governing partial differential equations suddenly change through
the domain of interest, then domain decomposition becomes a necessity (see Fig. 2). For such
problems, the vector of boundary degrees of freedom should be modified to include the
displacements and the curvatures at the common sections of each two adjacent sub-domains. For
example, consider the section ‘i’ of the two sub-domains ‘i’ and ‘i þ 1’ in Fig. 2. The new
boundary degrees of freedom at this common section are ½uic wic KiL KiR�: Subscripts ‘c’, ‘L’ and
‘R’ stand for common, left and right of a common section ‘i’. Therefore, the boundary degrees of
freedom become

fUbg ¼ ½½u1 uN � ½w1 wN � ½K1 KN � ½u1c w1c K1L K1R�

y½uNcc wNcc KNcL KNcR��T; ð22Þ

where Nc is the number of common sections of the individual sub-domains.
The governing equations of each sub-domain is similar to those of a single domain obtained in

Sections 2.1 and 2.2. In addition to the external boundary conditions, the geometric and physical
compatibility should be satisfied at the common sections of the two adjacent sub-domains. The
geometric compatibility conditions include the continuity of tangential and radial displacements,
and the slopes. The continuity of the displacement components is automatically satisfied, since
they are chosen as the degrees of freedom. The continuity of slope at the interface of sub-domains
‘i’ and ‘i þ 1’ is written as

du

dy
þ

w

R

� �����
ðiÞ

�
du
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þ

w

R

� �����
ðiþ1Þ

¼ 0; ð23Þ

with its DQ analogue of

1
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�
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In the above, Ni represents the total number of grid points in sub-domain ‘i’, and bi represents
the end grid point in ith sub-domain. Due to the fact that the number of grid points in each sub-
domain may be unequal, their weighting coefficients are different.
Since the DQ method has solved the strong form of the governing equations, the compatibility

conditions in a strong form become a necessity. The continuity of axial forces, bending moments,
and shear forces and their respective DQ analogue become as follows:

Axial force
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Using the analogues equations Eqs. (24), (26), (28) and (30), in addition to the external boundary
conditions, one has an assembled system of equations similar to Eq. (18). The assembled form of
the governing equations has a similar form to Eq. (8). Therefore similar to the procedure used for
a single domain, the boundary degrees of freedom, i.e., fUbg; should be eliminated from the
assembled governing equations. The resulting eigenvalue problems should then be solved to
obtain the natural frequencies and their related mode shapes.
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5. Numerical results

All numerical results are based on the extensible theory. The natural frequencies presented in
Tables 1–10 are non-dimensionalized. To obtain the results for inextensible arches, in all related
examples the value of the slenderness ratio is chosen to be Sr ¼ 104: Due to the fact that most
previous results are based on inextensible theory, most of the examples are chosen with the
inextensible assumption to verify the accuracy of the method. The convergence and the stability of
the results are proved in Sections 5.1 and 5.2 for some different boundary conditions and
geometries for the arches under consideration.

5.1. Uniform circular arch

A circular arch with different opening angles and under conditions with at least one edge free
(the boundary condition to which DQM is most sensitive) is considered. The convergence and the
stability of the evaluated fundamental natural frequencies are shown in Table 1. As shown, well
converged results can be obtained with N ¼ 9; however results converged to six significant digits
can be obtained with N ¼ 14: The accuracy of these results is checked by comparing them with
those of other numerical methods in Table 2. It is noteworthy to see that the results from the
present methodology are very close to those of other techniques such as GDQR [15]. The results
are slightly greater than those of the Cell Discretization Method (CDM) which predicts a lower
bound to the fundamental frequency [1].

5.2. Parabolically variable thickness ring

Gutierrez and Laura [11] have studied the fundamental natural frequency of a completely free
and a simply supported ring as shown in Fig. 3. These examples have been considered here and the
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Table 1

Convergence and stability of non-dimensional fundamental natural frequencies ðliÞ for a circular arch under different
opening angles and boundary conditions

Boundary yo Number of grid points ðNÞ
conditions

9 11 13 14 15 19

C–F 10� 115.456 115.496 115.496 115.496 115.496 115.496

90� 1.4971 1.4982 1.4982 1.4982 1.4982 1.4982

180� 0.4291 0.4352 0.4353 0.4352 0.4352 0.4352

S–F 10� 502.857 504.036 503.988 503.989 503.989 503.989

90� 4.8971 4.8866 4.8868 4.8868 4.8868 4.8868

180� 0.9400 0.9180 0.9188 0.9188 0.9188 0.9188

F–F 10� 738.543 733.441 733.652 733.649 733.649 733.649

90� 8.5342 8.3851 8.3913 8.3912 8.3912 8.3912

180� 1.9643 1.8307 1.8374 1.8372 1.8372 1.8372
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results are shown in Table 3. Also, the results from the optimized Rayleigh–Ritz (ORR) method
and conventional DQ (CDQ) methodology as presented by Gutierrez and Laura are shown in this
table. For both cases, the ring has a rectangular cross-section with constant width and a parabolic
variable thickness according to hðxÞ ¼ ho½�ð4=p2Þða� 1Þx2 þ ð4=pÞða� 1Þx þ 1�; where x ¼ y=yo
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Table 2

Non-dimensional fundamental natural frequency ðl1Þ of a uniform circular arch under different boundary conditions

yo C–F S–F F–F

Present GDQ FEM CDM Present GDQ Present GDQ

10� 115.4953 115.4953 503.9888 503.9888 733.6490 733.6490

20� 28.9274 28.9274 28.920 28.196 124.4238 124.4238 182.8018 182.8019

30� 12.8964 12.8964 54.1996 54.1996 80.8026 80.8026

40� 7.2857 7.2857 7.2827 7.1035 29.6905 29.6905 45.1137 45.1137

60� 3.2784 3.2784 3.2738 3.197 12.3434 12.3434 19.6501 19.6501

80� 1.8763 1.8763 1.8766 1.8303 6.4319 6.4319 10.7730 10.7730

90� 1.4982 1.4982 4.8868 4.8868 8.3912 8.3912

100� 1.2279 1.2279 1.2277 1.195 3.8080 3.8080 6.6961 6.6961

120� 0.8762 0.8762 0.8761 0.8544 2.4564 2.4564 4.5088 4.5088

140� 0.6647 0.6647 0.6647 0.648 1.6885 1.6885 3.2122 3.2122

160� 0.5282 0.5282 0.5283 0.510 1.2202 1.2202 2.3882 2.3882

180� 0.4352 0.4352 0.4355 0.4242 0.9188 0.9188 1.8372 1.8372

Table 3

Non-dimensional fundamental natural frequency ðl1Þ of a parabolically variable thickness ring: (a) simply supported
and, (b) completely free ring

a Number of grid points ORR [11] CDQ [11]

5 7 9 11 13 14 15 24

(a) Simply supported ring

1 2.7843 2.2670 2.2668 2.2667 2.2667 2.2667 2.2667 2.2667 2.274 2.268

1.1 2.7953 2.4134 2.4136 2.4136 2.4136 2.4136 2.4136 2.4136 2.416 2.417

1.2 2.7710 2.5573 2.5567 2.5567 2.5567 2.5567 2.5567 2.5567 2.557 2.561

1.3 2.7119 2.7021 2.6964 2.6965 2.6965 2.6965 2.6965 2.6965 2.697 2.701

1.4 2.6169 2.8512 2.8330 2.8334 2.8334 2.8334 2.8334 2.8334 2.834 2.839

1.5 2.4835 3.0077 2.9668 2.9676 2.9676 2.9676 2.9676 2.9676 2.970 2.976

(b) Completely free ring

1 2.7344 2.6822 2.6833 2.6833 2.6833 2.6833 2.6833 2.6833 2.687 2.686

1.1 2.8994 2.8482 2.8451 2.8452 2.8452 2.8452 2.8452 2.8452 2.846 2.849

1.2 3.0279 3.0182 3.0062 3.0062 3.0062 3.0062 3.0062 3.0062 3.006 3.010

1.3 3.1271 3.1849 3.1668 3.1665 3.1665 3.1665 3.1665 3.1665 3.167 3.171

1.4 3.2023 3.3450 3.3270 3.3262 3.3263 3.3263 3.3263 3.3263 3.326 3.332

1.5 3.2596 3.4948 3.4863 3.4858 3.4858 3.4858 3.4858 3.4858 3.486 3.493
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and a is the taper parameter. To obtain the fundamental natural frequency, Gutierrez and Laura
have modelled one-half and one-quarter of the ring, respectively, for simply supported and the
free boundary conditions cases. This is followed here as well, but one should note that for the case
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Table 4

Non-dimensional natural frequencies for an unsymmetric arch under different boundary conditions

a ¼ 0:1 a ¼ 0:2 a ¼ 0:3 a ¼ 0:4

Present GDQR [15] Present GDQR [15] Present GDQR [15] Present GDQR [15]

S–S ðl1Þ
yo ¼ 10� 1290.485 1290.485 1281.335 1281.336 1265.764 1265.767 1243.234 1243.238

20� 320.7631 320.7631 318.4851 318.4851 314.6083 314.6084 308.9986 308.9987

40� 78.3731 78.3731 77.8126 77.8126 76.8588 76.8588 75.4785 75.4785

60� 33.5461 33.5461 33.3034 33.3034 32.8904 32.8904 32.2929 32.2928

80� 17.9206 17.9206 17.7890 17.7890 17.5649 17.5649 17.2406 17.2406

C–C ðl1Þ
yo ¼ 10� 2016.983 2016.983 2001.812 2001.813 1975.993 1975.996 1938.632 1938.637

20� 502.3033 502.3033 498.5259 498.5260 492.0976 492.0978 482.7954 482.7959

40� 123.6698 123.6698 122.7406 122.7406 121.1591 121.1592 118.8708 118.8708

60� 53.6074 53.6075 53.2053 53.2053 52.5208 52.5209 51.5304 51.5305

80� 29.1456 29.1456 28.9275 28.9275 28.5564 28.5564 28.0193 28.0193

C–F ðl1Þ
yo ¼ 10� 101.6757 101.6757 88.4809 88.4809 75.8416 75.8419 63.6878 63.6881

20� 25.4671 25.4671 22.1631 22.1631 18.9979 18.9980 15.9531 15.9544

40� 6.4152 6.4152 5.5839 5.5839 4.7872 4.7873 4.0207 4.0211

60� 2.8875 2.8875 2.5140 2.5140 2.1560 2.1560 1.8114 1.8116

80� 1.6532 1.6532 1.4399 1.4399 1.2354 1.2354 1.0385 1.0385

C–F ðl2Þ
yo ¼ 10� 692.2050 692.2051 660.9591 660.9595 626.7909 626.7922 589.3152 589.2368

20� 171.1086 171.1086 163.2148 163.2150 154.5999 154.6006 145.1560 145.1512

40� 41.0089 41.0089 38.9736 38.9737 36.7690 36.7692 34.3702 34.3693

60� 17.1390 17.1390 16.2107 16.2108 15.2158 15.2158 14.1445 14.1441

80� 8.9728 8.9728 8.4461 8.4461 7.8878 7.8878 7.2934 7.2932

S–F ðl1Þ
yo ¼ 10� 489.2786 489.2786 472.9768 472.9768 454.7679 454.7681 434.2522 434.2458

20� 120.6608 120.6608 116.5046 116.5046 111.8773 111.8774 106.6801 106.6792

40� 28.6833 28.6833 27.5837 27.5837 26.3735 26.3735 25.0296 25.0296

60� 11.8668 11.8668 11.3540 11.3540 10.7979 10.7979 10.1893 10.1893

80� 6.1535 6.1535 5.8585 5.8585 5.5431 5.5431 5.2029 5.2029

S–F ðl2Þ
yo ¼ 10� 1622.040 1622.047 1600.490 1600.486 1572.893 1572.888 1538.571 1538.576

20� 403.7542 403.7565 398.2833 398.2820 391.2886 391.2870 382.5936 382.5978

40� 99.2894 99.2899 97.8566 97.8563 96.0366 96.0363 93.7826 93.7838

60� 43.0319 43.0322 42.3657 42.3656 41.5270 41.5270 40.4947 40.4953

80� 23.4387 23.4389 23.0517 23.0516 22.5692 22.5692 21.9795 21.9798
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of a completely free ring, the boundary conditions in the present formulation become guided
supports for both ends. As can be seen in Table 3, accurate solutions can be obtained with only
nine grid points for all values of taper parameter a: Also, it is interesting to note that the
converged fundamental natural frequencies are always slightly less than those of the Rayleigh–
Ritz method, which is fruitful, since the former gives an upper bound of fundamental natural
frequencies. It is interesting that the d-technique, employed by Gutierrez and Laura produces
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Table 5

The first eight non-dimensional natural frequencies ðy2o liÞ of a simply supported uniform circular arch at different

slenderness ratio ðyo ¼ 90�Þ

Method Sr Mode sequences

1 2 3 4 5 6 7 8

(a) Without rotary inertia effect

Present 11.78 18.081 29.923 45.535 71.514 89.770 110.64 148.23 155.88

Ref. [3] 18.08 29.93 45.54 71.52 89.76 110.7 148.23 155.9

Present 23.56 33.320 33.560 81.481 84.892 152.43 153.78 225.72 241.66

Ref. [3] 33.32 33.56 81.49 84.89 152.5 153.8 225.7 241.7

Present 47.12 33.819 61.832 90.977 144.83 171.24 241.43 305.47 350.89

Ref. [3] 33.82 61.84 90.98 144.8 171.2 241.5 305.5 351.8

Present 117.8 33.939 78.710 151.84 174.56 247.05 345.16 414.02 479.43

Ref. [3] 33.94 78.71 151.9 174.6 247.1 345.4 414.1 480.1

Present 251.3 33.956 79.719 152.11 235.26 349.19 380.16 486.28 624.09

Ref. [3] 33.96 79.72 152.1 235.3 349.4 380.2 486.9 625.4

Present 377.0 33.958 79.851 152.14 237.06 349.39 466.89 585.41 625.36

Ref. [3] 33.96 79.85 152.2 237.1 349.7 467.5 585.6 626.8

(b) Including rotary inertia effect

Present 23.56 32.547 33.294 79.536 80.523 136.96 150.84 203.31 223.32

Ref. [4] 32.55 33.30 79.54 80.5 137.0 150.9 203.4 223.3

Present 47.12 33.601 61.587 89.549 141.77 168.88 229.84 304.24 326.64

Ref. [4] 33.60 61.59 89.56 141.8 168.9 229.9 304.3 326.9

Present 94.25 33.870 77.486 142.76 150.39 241.29 317.39 354.06 466.44

Ref. [4] 33.87 77.49 142.8 150.4 241.4 317.4 354.3 467.1

Present 188.5 33.938 79.444 151.74 229.34 295.40 347.16 478.28 610.10

Ref. [4] 33.94 79.45 151.8 229.34 295.4 347.4 478.9 611.1

Present 377.0 33.955 79.831 152.06 236.86 348.97 466.21 585.20 624.09

Ref. [4] 33.96 79.83 152.1 236.9 349.0 466.8 585.3 625.1
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results for the tapered ring that are greater than those of the Rayleigh–Ritz method. Excellent rate
of convergence and stability of the results for the present method, are other important points.

5.3. Unsymmetrical arch under different boundary conditions

An unsymmetric variable section arch, as shown in Fig. 4, is considered here with classical
boundary conditions. The results are compared with those of Liu and Wu [15] for the same
problem. The arch cross-sectional height varies as hðxÞ ¼ ho½1þ að2x � 1Þ�; where a is a taper
parameter. One should note that the height ratio at both ends of the arches is ð1þ aÞ=ð1� aÞ: For
example, for the case that a ¼ 0:4; this ratio becomes 2.33333, which signifies a sufficiently steep
variation. Similarly to Liu and Wu [15], for both ends simply supported or clamped, only the
fundamental natural frequencies are to be presented here. For other cases with an edge free, the
second natural frequencies are also presented. A wide range of opening angle is considered. Fully
converged results with six significant digits are obtained with fifteen grid points. The results are
presented in Table 4. Excellent agreement between the solutions of the present algorithm and
those of GDQR [15] is achieved.
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Table 6

The first four non-dimensional natural frequencies ðy2o liÞ for a simply supported unsymmetric circular arch at various
slenderness ratios: (a) without rotary inertia effect, (b) including rotary inertia ðyo ¼ 90�)

Sr (a) (b)

Mode sequences Mode sequences

1 2 3 4 1 2 3 4

a ¼ 0:2
10 15.7321 27.5084 41.7016 61.9394 15.0512 26.4509 36.6221 59.8374

20 28.4944 33.0362 69.7577 83.4926 28.1055 32.1210 68.5767 76.6721

40 33.3846 54.1716 87.5759 131.7111 33.0889 53.9646 85.5789 130.1944

100 33.5913 77.3912 148.9517 151.8941 33.5420 77.1428 148.2080 151.3740

200 33.6177 78.8493 150.6174 229.7436 33.6053 78.7802 150.3466 229.1882

400 33.6242 79.1319 150.7037 234.8868 33.6211 79.1144 150.6357 234.7231

500 33.6250 79.1641 150.7135 235.1967 33.6230 79.1528 150.6699 235.0911

1000 33.6261 79.2064 150.7264 235.5594 33.6256 79.2036 150.7155 235.5328

10 000 33.6264 79.2202 150.7306 235.6682 33.6264 79.2202 150.7306 235.6682

a ¼ 0:4
10 15.3808 27.2389 41.0108 61.7392 14.6229 26.2164 36.2061 59.1208

20 27.4516 33.0317 69.2042 81.4075 26.9219 32.2817 68.1048 74.9140

40 32.2224 53.8479 85.6098 130.0347 31.9341 53.6324 128.3776 149.8200

100 32.5317 75.2261 144.2728 151.5037 32.4839 74.9931 143.4350 151.1600

200 32.5682 76.5783 146.0861 223.2404 32.5562 76.5140 145.8354 222.7171

400 32.5741 76.8284 146.1292 227.5854 32.5771 76.8448 146.1922 227.7362

500 32.5782 76.8752 146.2038 228.0233 32.5763 76.8647 146.1634 227.9260

1000 32.5796 76.9152 146.2190 228.3621 32.5791 76.9126 146.2089 228.3376

10 000 32.5801 76.9283 146.2239 228.4643 32.5801 76.9283 146.2238 228.4640
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5.4. A circular arch at different slenderness ratios with and without rotary inertias and under
different boundary conditions

In order to verify the accuracy of the present method for predicting the higher order modes, and
also to study the effects of the slenderness ratio and rotary inertia on natural frequencies, a simply
supported uniform circular arch is considered again. Twenty grid points are sufficient for results
converged to at least five significant digits for the first-eight natural frequencies. The
nondimensional natural frequencies are presented in Table 5 with and without considering the
rotary inertia effects. The solutions are compared with those of Veletsos et al. [3], and Austin and
Veletsos [4]. An excellent agreement is achieved. One can recognize the effects of rotary inertia at
higher modes at low Sr:
The results for a simply supported unsymmetric variable section circular arch, which include

both the effects of slenderness ratio as well as rotary inertia, are presented in Table 6. The cross-
sectional height varies as hðxÞ ¼ ho½1þ að2x � 1Þ�: In Table 6 one can also see the effects of
inclusion of rotary inertia in calculations of natural frequencies at different values of slenderness
ratios. One can see the slenderness ratio has a major effect on the frequencies at higher modes.
Some new results for a variable section, nonsymmetric circular arch with clamped-free and

simply-supported free ends are exhibited in Table 7. For all cases in this table, 19 grid points are
used to give a solution converged to at least six significant digits. It is interesting to note that for
the cases in which one edge is free, the effect of tangential deformation on fundamental natural
frequencies becomes negligible. Also, by a comparison of Tables 6 and 7 one can determine the
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Table 7

The first four non-dimensional natural frequencies ðliÞ for an unsymmetric circular arch ðyo ¼ 90�Þ for a range of
slenderness ratios under two types of boundary conditions

Sr a ¼ 0:2 a ¼ 0:4

1 2 3 4 1 2 3 4

(a) C–F 10 1.1459 5.2464 9.2412 19.0111 0.8281 4.6070 8.5326 18.6866

20 1.1492 6.1770 15.1378 23.6891 0.8297 5.3199 14.1893 22.5310

40 1.1500 6.3606 20.9929 32.7188 0.8301 5.4686 19.5914 31.2566

100 1.1503 6.4065 21.7711 45.1050 0.8302 5.5068 20.3880 43.0568

200 1.1503 6.4128 21.8426 45.4646 0.8302 5.5121 20.4636 43.4269

400 1.1503 6.4144 21.8593 45.5306 0.8303 5.5135 20.4813 43.4950

1000 1.1503 6.4149 21.8614 45.5477 0.8303 5.5138 20.4863 43.5127

4000 1.1503 6.4149 21.8648 45.5508 0.8303 5.5139 20.4871 43.5158

(b) S–F 10 4.1486 8.4542 17.3218 21.3077 3.6562 7.9851 16.8988 20.9266

20 4.3709 15.0103 19.7722 38.7134 3.8593 14.0434 19.2201 37.9870

40 4.4168 17.6033 32.6997 41.1227 3.9032 16.6963 31.2418 39.8390

100 4.4289 17.8385 39.4780 68.3066 3.9150 16.9810 38.0320 65.7725

200 4.4307 17.8642 39.6021 69.1713 3.9167 17.0123 38.1732 66.7949

400 4.4311 17.8704 39.6271 69.2558 3.9171 17.0199 38.2016 66.8930

1000 4.4312 17.8721 39.6338 69.2758 3.9172 17.0219 38.2091 66.9162

4000 4.4312 17.8724 39.6350 69.2793 3.9172 17.0223 38.2105 66.9201
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Table 8

Non-dimensional fundamental frequency ðl1Þ of a uniform circular arch with ends elastically restrained against rotation

yo KT ¼ 0 KT ¼ 6 KT ¼ 12

Present CDM [1] Galerkin [1] Present CDM [1] Galerkin [1] Present CDM [1] Galerkin [1]

40� 78.558 78.558 78.396 90.954 90.692 91.972 98.014 97.676 100.17

80� 17.964 17.964 17.932 22.788 22.713 23.345 24.711 24.612 25.489

120� 6.9268 6.9268 6.9168 9.5407 9.5073 9.8534 10.337 10.293 10.719

180� 2.2667 2.2667 2.2646 3.6196 3.6061 3.7656 3.9151 3.8977 4.0768

KT ¼ 24 KT ¼ 100 KT ¼ 107

Present CDM [1] Galerkin [1] Present CDM [1] Galerkin [1] Present CDM [1] Galerkin [1]

40� 105.79 105.36 108.83 117.71 117.09 121.23 123.98 123.24 127.26

80� 26.399 26.275 27.283 28.383 28.225 29.268 29.218 29.045 30.061

120� 10.954 10.900 11.356 11.599 11.534 11.778 11.848 11.778 12.225

180� 4.1197 4.0991 4.2825 4.3140 4.2903 4.4710 4.3844 4.3595 4.5387
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effects of the boundary conditions on the natural frequencies, again, at different values of
slenderness ratios.

5.5. Elastically restrained uniform circular arch

In order to examine the accuracy of the methodology for non-classical boundary conditions, a
circular arch with both ends elastically restrained against rotation (as shown in Fig. 5) is
considered. Auciello and De Rosa [1] have used CDM to obtain the fundamental natural
frequency of such a circular arch. They have employed the inextensible theory. They have argued
their method yields a lower bound for the fundamental natural frequency. Here, the same problem
is examined under a wide range of rotational stiffnesses KT ð¼ ktR=EIoÞ and opening angles. At
both ends the torsional stiffness is chosen to be equal. The results are shown in Table 8. For all
cases, the results of present analysis are slightly greater than those of CDM but slightly less than
those of the Galerkin method [1]. It should be noted here, that in general, the Galerkin method
would not result in upper bound values for natural frequencies.

5.6. Analysis of uniform circular arch under ‘‘approximate theory’’ assumption

The accuracy of the present method for solving the governing equation of ‘approximate theory’
is demonstrated through the solutions for nondimensionalized natural frequencies of a uniform
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Table 9

The first 10 non-dimensional natural frequencies ðliÞ obtained from the approximate theory

yo Mode S–S C–C C–F

Present Exact [5] DQ [6] Present Exact [5] DQ [6] Present Exact [5] DQ [6]

40� 1 80.000 80.000 80.000 125.79 125.792 125.792 7.462 7.462 7.462

2 172.00 172.005 172.00 226.91 226.910 226.910 44.611 44.611 44.611

3 323.00 323.000 323.00 409.20 409.204 409.204 125.845 125.845 125.845

4 496.47 496.470 496.47 593.04 593.043 593.043 247.243 247.243 247.243

5 982.65 982.646 728.00 854.66 854.661 854.661 409.204 409.204 409.204

6 728.00 728.000 982.65 1120.18 1120.18 1120.18 611.678 611.678 611.678

7 1295.00 1295.00 1294.99 1462.14 1462.14 1462.14 854.661 854.661 854.661

8 1630.74 1630.74 1630.91 1809.02 1809.02 1809.05 1138.15 1138.15 1138.152

9 2024.00 2024.00 2025.80 2231.62 2231.62 2232.19 1462.14 1462.14 1462.115

10 2440.79 2440.80 2420.56 2659.70 2659.73 2653.40 1826.63 1826.63 1825.366

160� 1 4.063 4.063 4.063 7.1898 7.189 7.1898 0.766 0.766 0.766

2 9.855 9.855 9.855 13.423 13.423 13.4234 2.315 2.315 2.315

3 19.250 19.250 19.250 24.775 24.775 24.7755 7.197 7.197 7.197

4 30.107 30.107 30.107 36.239 36.239 36.2388 14.696 14.696 14.696

5 44.563 44.563 44.563 52.572 52.572 52.5723 24.775 24.775 24.775

6 60.485 60.485 60.485 69.154 69.154 69.1543 37.404 37.404 37.404

7 80.000 80.000 80.000 90.517 90.517 90.517 52.572 52.572 52.572

8 100.988 100.988 100.999 112.189 112.189 112.191 70.277 70.277 70.278

9 125.562 125.563 125.676 138.596 138.596 138.632 90.517 90.517 90.516

10 151.615 151.615 150.345 165.345 165.348 164.952 113.290 113.290 113.210
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circular arch under different opening angles and under different boundary conditions as presented
in Table 9. These results for the first ten natural frequencies are compared with the exact solutions
[5] as well as another DQ solution [6]. Thirty grid points were employed to obtain results
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Table 10

Non-dimensional natural frequencies for a symmetric tapered arch under different boundary conditions and with

different opening angles

a ¼ 0:1 a ¼ 0:2 a ¼ 0:3

Present GDQR [15] Present GDQR [15] Present GDQR [15]

C–C ðl1Þ
yo ¼ 10� 2149.7594 2149.7593 2275.3958 2275.3957 2399.1619 2399.1619

20� 535.4500 535.4500 566.8193 566.8193 597.7229 597.7229

30� 236.5183 236.5183 250.3404 250.3404 264.1372 264.1371

40� 131.9088 131.9088 139.7107 139.7107 147.3984 147.3984

50� 83.5073 83.5073 88.4809 88.4809 93.3824 93.3824

C–C ðl2Þ
yo ¼ 10� 3858.7878 3859.2373 4073.3759 4073.8708 4285.6463 4286.188

20� 963.4028 963.4309 1017.0119 1017.0424 1070.0422 1070.0756

30� 427.1678 427.1733 450.9602 450.9661 474.4959 474.5023

40� 239.4849 239.4866 252.8411 252.8428 266.0533 266.0552

50� 152.6174 152.6181 161.1432 161.1439 169.5771 169.5779

S–S ðl1Þ
yo ¼ 10� 1357.2106 1357.2106 1419.0535 1419.0535 1479.2608 1479.2608

20� 337.8891 337.8891 352.7986 352.7986 367.8006 367.8006

30� 148.5490 148.5490 155.3598 155.3598 161.9904 161.9904

40� 82.4735 82.4735 86.2745 86.2745 89.9750 89.9750

50� 51.9099 51.9095 54.3172 54.3172 56.6613 56.6613

S–S ðl2Þ
yo ¼ 10� 2913.1934 2913.2945 3058.8290 3058.9326 3202.7096 3202.8152

20� 726.8991 726.9054 763.2511 763.2575 799.1647 799.1712

30� 322.0205 322.0217 338.1346 338.1359 354.0541 354.0553

40� 180.3159 180.3163 189.3468 189.3472 198.2685 198.2689

50� 114.7310 114.7310 120.4834 120.4836 126.1649 126.1664

R

�

R

hο

(a) (b)

hο

�

Fig. 3. Ring with a parabolic variable thickness: (a) simply supported, (b) completely free ring.
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converged to five significant digits. Excellent agreements are achieved in comparison with the
exact solutions both for shallow and deep arches.

5.7. Symmetric tapered and unsymmetric stepped arches

To assess, and to demonstrate implementation of the domain decomposition scheme in
conjunction with the present DQ methodology for the problems having sudden changes in
geometrical cross-section, two examples are considered. In the first example, a symmetric tapered
arch, as shown in Fig. 6, under different tapered angle, under two different boundary condition
types and at different values for the opening angle is considered. The cross-sectional height varies
as

hðxÞ ¼
ho½1� að2x � 1Þ�; when 0pxp1=2;
ho½1þ að2x � 1Þ�; when 1=2pxp1:

(

This problem has also been studied by Liu and Wu [15] who solved it by GDQR. The results for
the first two natural frequencies, using N ¼ 14; are shown in Table 10 and compared with those of
Liu and Wu [15].
In another example, a stepped circular arch, as shown in Fig. 7, with h2=h1 ¼ 1:25 is considered.

The results of Liu and Wu [15] and Tong et al. [2] are also cited for comparison in Table 11. For
the analysis at each sub-domain 14 grid points are used. Excellent agreements are achieved among
the different solution procedures.
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Fig. 4. Unsymmetric arch.
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Fig. 5. Arch with ends elastically restrained against rotation.
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6. Conclusions

A general and a computationally efficient DQ solution method for in-plane free vibration
analysis of variable section circular arches was presented. In an improvement to the analysis of
circular arches, the inextensibility condition assumption was removed. Circular arches under
different types of classical boundary conditions, and also with edges elastically restrained against
rotation, were examined for shallow as well as deep arches. The DQ solution to the governing
equations under ‘‘approximate theory’’ was also developed and examined. The domain
decomposition technique in conjunction with DQM was also incorporated for arches with
change in their geometry or material properties. The effects of slenderness ratio and the rotary
inertia on the solutions were also examined. Employing the algorithm, different examples were
analyzed to verify the accuracy and applicability of the methodology. It can be concluded that the
present methodology can also be used as an alternative and efficient tool for the solution to
similar problems in solid mechanics analysis.

Appendix A. Evaluation of weighting coefficients

According to DQM, the mth order derivative of a field variable uðx; tÞ with respect to x at an
arbitrary point xi is approximated by

@mu

@xm

����
xi

¼
XN

j¼1

A
ðmÞ
ij uðxj; tÞ; ðA:1Þ
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Fig. 6. Symmetric tapered arch.
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Fig. 7. Unsymmetric stepped arch.
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where A
ðmÞ
ij are the weighting coefficients associated with the mth order derivative and N is the

number of grid points in the x direction. The weighting coefficients of the first order derivatives
are determined according to [7]

A
ð1Þ
ij ¼

M ð1ÞðxiÞ
ðxi � xjÞM ð1ÞðxjÞ

for iaj;

�
PN

j¼1
iaj

A
ð1Þ
ij for i ¼ j; i; j ¼ 1; 2;y;N;

8>><
>>: ðA:2Þ
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Table 11

Non-dimensional natural frequencies ðliÞ for an unsymmetric stepped arch under different boundary conditions and
with different opening angles

Mode sequences

1 2 3 4 5

Present GDQR [15] Ref. [2] Present GDQR [15] Present Present Present

(a) S–S

yo ¼ 10� 1458.837 1458.838 1458.852 3054.560 3054.689 5823.40 8791.24 13077.04

20� 362.6133 362.6133 362.609 762.165 762.173 1453.76 2196.48 3267.18

30� 159.6269 159.6269 159.625 337.6350 337.6366 644.576 975.096 1450.54

40� 88.6024 88.6024 88.601 189.0526 189.0531 361.376 547.605 814.736

50� 55.7503 55.7503 55.750 120.2845 120.2847 230.310 349.738 520.460

60� 37.9269 37.9269 37.926 82.9337 82.9338 159.128 242.256 360.620

70� 27.2019 27.2019 60.4173 60.4173 116.222 177.451 264.255

80� 20.2622 20.2622 45.8081 45.8082 88.3879 135.392 201.723

(b) C–S

yo ¼ 10� 1853.704 1853.704 1853.663 3538.327 3538.337 6563.38 9624.97 14165.8

20� 461.3518 461.3518 461.342 883.072 883.07 1638.56 2405.02 3539.12

30� 203.5249 203.5249 203.520 391.3581 391.3579 726.571 1067.74 1571.23

40� 113.3039 113.3039 113.014 219.2632 219.2635 407.389 599.679 882.482

50� 71.5644 71.5644 71.563 139.6135 139.6136 259.671 383.033 563.709

60� 48.9112 48.9112 48.910 96.3523 96.3524 179.447 265.351 390.565

70� 35.2721 35.2721 70.2727 70.2727 131.091 194.396 286.182

80� 26.4394 26.4394 53.3516 53.3515 99.7225 148.346 218.445

(c) C–C

yo ¼ 10� 2277.434 2277.436 2277.412 4027.230 4027.767 7366.079 10494.09 15339.85

20� 567.1737 567.1738 567.170 1005.440 1005.474 1839.008 2622.562 3832.345

30� 250.4748 250.4748 250.472 445.7867 445.7933 815.4926 1164.457 1701.336

40� 139.6489 139.6489 139.647 249.9069 249.909 457.2812 654.0919 955.5034

50� 88.3724 88.3724 88.372 159.2458 159.2467 291.5007 417.8631 610.3108

60� 60.5389 60.5389 60.538 110.0019 110.0024 201.4672 289.5425 422.8204

70� 43.7766 43.7766 80.3138 80.3141 161.9572 212.1714 309.7906

80� 32.9173 32.9173 61.0496 61.0498 127.5332 161.9572 236.4499
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where MðxÞ is defined as

MðxÞ ¼
YN
j¼1

ðx � xjÞ: ðA:3Þ

M ð1ÞðxÞ is the first order derivative of the function, MðxÞ:

M ð1ÞðxiÞ ¼
YN

j¼1; jai

ðxi � xjÞ: ðA:4Þ

In order to evaluate the weighting coefficients of higher order derivatives, recurrence relations
may be employed,

A
ðrÞ
ij ¼

r A
ðr�1Þ
ii A

ð1Þ
ij �

A
ðr�1Þ
ij

xi � xj

" #
; iaj;

�
PN

j¼1
iaj

A
ð1Þ
ij ; i ¼ j; for i; j ¼ 1; 2;y;N and r ¼ 2; 3;y;N � 1:

8>>><
>>>:

ðA:5Þ

For simplicity, we use the notations

Aij ¼ A
ð1Þ
ij ; Bij ¼ A

ð2Þ
ij : ðA:6Þ

In this paper the grid points are located at the so-called Gauss–Lobatto–Chebyshev points,

xi ¼
1

2
1� cos

ði � 1Þp
ðN � 1Þ

� �� �
: ðA:7Þ
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