In-plane free vibration analysis of circular arches with varying cross-sections using differential quadrature method

G. Karami ${ }^{\text {a,* }}$, P. Malekzadeh ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mechanical Engineering and Applied Mechanics, North Dakota State University, Fargo, ND 58105, USA
${ }^{\mathrm{b}}$ Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Busher 75168, Iran

Received 16 July 2002; accepted 15 June 2003

Abstract

A differential quadrature (DQ) methodology recently developed by the authors is used to obtain a general and a computationally efficient and accurate DQ solution for free vibration of variable crosssection circular thin arches. As an improvement to the classical theory and in order to evaluate the higher order natural frequencies more accurately, the commonly used hypothesis of "the inextensibility of the central axis" is removed. This enables one to study the effects of slenderness ratio on the natural frequencies, especially at higher order modes. Rotary inertia is included in the formulation and its influence on natural frequencies is studied. Arches with different types of boundary conditions, including those with elastic constraint against rotation at their ends, are considered. For the cases where a change in the crosssectional or material properties of the arch occurs, a numerical domain decomposition technique in conjunction with DQ methodology is developed and incorporated. To verify the accuracy of the methodology, the results are compared with those of exact solutions and/or other approaches such as finite elements, Rayleigh-Ritz, Galerkin, cell discretization methods, and other DQ methodologies. In particular, excellent solution agreements are achieved with those of exact solutions, the generalized differential quadrature rule and the optimized Rayleigh-Ritz method solutions.

(C) 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Due to practical importance of circular arches, many researchers have studied static as well dynamic behavior of such elements. The numerical simulations are mostly based on finite elements, Rayleigh-Ritz, Galerkin, and cell discretization methods. A review on the different methods of analysis for circular arches has been recently presented by Auciello and De Rosa [1].

[^0]Tong et al. [2] have used the exact solution of inextensible thin uniform circular arches to study the in-plane free and forced vibration of circular arches with stepped cross-sections. As a consequence, they have used their method to obtain an approximate solution for arches with nonuniform cross-sections.

Basically, the governing equations of the thin arches include fourth and second order partial differential equations (PDEs). In most studies in order to simplify the system of equations, an additional assumption of the inextensibility (or incompressibility) of the centroidal axes has been employed. Using this assumption, the two-coupled partial differential governing equations are reduced to a sixth order partial differential equation. However, in order to improve the accuracy of natural frequency evaluations, especially at higher order modes, it is suggested that axial deformation should be accounted for $[3,4]$. As an alternative simplifying assumption for inextensible arches, one may neglect the effect of tangential inertias [5,6]. This approach which is called "approximate theory" after De Rosa and Franciosi [6] may be employed only for shallow arches in conjunction with the inextensible centroidal axes assumption [5,6].

In this paper, a DQ method is used to solve the basic governing equations of thin circular arches comprising both radial as well as tangential displacements as field variables. The slenderness ratio as a design parameter would thus be introduced in the governing equations. Arbitrary variable cross-section arches with a system of PDEs having variable coefficients are considered. Closed form solutions to such a system of PDEs do not exist. The efforts here are focused to develop a DQ solution for such a system of equations to reduce the amount of computations, and also to provide a general and simpler numerical DQ scheme. It is a known fact that the difficulty in implementing multiple boundary conditions of a field variable is a draw back in conventional DQ methods [7]. Here, a recently developed DQ methodology [8,9] is to be employed to implement the multiple boundary conditions at boundary points in a more efficient manner. The applicability of this DQ methodology has been tested for beam elements [8] and for rectangular plates of any classical and some non-classical boundary conditions, such as a plate with point supports [9]. Excellent results have been achieved for all cases, and especially for those cases that conventional DQ methods have not yielded a converged solution or have resulted to low accuracy solutions. The efficiency of this methodology was further demonstrated in another application for the quadrilateral straight-sided plates [10]. The present study however differs from the previous studies due to the fact that here, unlike in previous cases, a system of equations constructed from second and fourth order PDEs with variable coefficients have to be solved. In the ongoing study, any type of classical boundary conditions for arches is to be considered. In addition, non-classical boundary condition type of elastically restrained against rotation would also be incorporated. To account for any changes in geometrical and/or material properties a special domain decomposition technique is developed. Examples are solved to verify the implementation. To verify the accuracy, the results for extensible and inextensible arches and also the results based on the approximate theory are compared with those of exact and other methods and in special cases with other DQ methods.

In DQM applications to arches, Gutierrez and Laura [11] have used DQ in conjunction with the δ-technique to obtain the fundamental natural frequency of continuously variable section ring type arches. They have used inextensible theory to investigate simply supported and completely free arches. Kang et al. [12] have also used the same procedure to study both extensible and inextensible uniform cross-sectional circular arches. They have obtained the fundamental natural
frequencies for arches with simply supported and clamped boundary conditions. Using the same method, the effects of warping have been considered in another effort by Kang et al. [13]. Kang and co-workers have also considered the free vibration of shear deformable arches [14]. De Rosa and Franciosi [6] have used a DQ method to study inextensible, uniform circular arches with clamped, simply supported and clamped-free boundary conditions. More recently Liu and Wu [15] have used the generalized differential quadrature rule to study the free vibration of inextensible circular arches. Variable cross-section arches under different types of classical boundary conditions have been examined. They have reported the natural frequencies up to only the second mode.

One point to be noted here is that by considering the governing equations of extensible arches, other DQ methods, which employ the first order derivative as a degree of freedom $[6,15]$, require more effort for implementation of boundary conditions. This is because the weighting coefficients in such cases depend on the order of governing PDEs and one cannot use the weighting coefficients of fourth order PDEs for second order PDEs. Therefore, for the problem under consideration, one should evaluate two sets of weighting coefficients, which increases the computational effort. In the analysis, the generalized differential quadrature rule (GDQR) is used as a computationally efficient technique for evaluation of weighting coefficients. It should be mentioned that Liew and Liu [16], Liew et al. [17] and Du et al. [18] have used GDQR for free vibration analysis of shear-deformable annular sector plates and cross-ply laminates, and also for the buckling analysis of classical beams and plates.

2. DQM formulations and implementations

2.1. Governing equations of arches

Consider a thin variable section arch as shown in Fig. 1. A material point on the centroidal axis of the undeformed arch is located by angle θ as shown in Fig. 1. The radius of curvature of the centroidal axis is denoted by R, the opening angle by θ_{o}, and the radial and tangential displacements of a material point on the centroidal axis by u and w, respectively.

Governing equations for such an arch, which include the effects of axial deformation and rotary inertia can be derived from the principle of total potential energy in a systematic

Fig. 1. Geometry of circular arch.
manner as

$$
\begin{align*}
& \frac{A E}{R^{2}} w^{\prime \prime}+\frac{(A E)^{\prime}}{R^{2}} w^{\prime}-\frac{A E}{R} u^{\prime}-\frac{(A E)^{\prime}}{R} u+\rho R \omega^{2}\left[\left(A+\frac{I}{R^{2}}\right) w+\frac{I}{R^{2}} u^{\prime}\right]=0 \tag{1}\\
& \left(\frac{E I}{R^{3}}\right) u^{\prime \prime \prime \prime}+\frac{2}{R^{3}}(E I)^{\prime} u^{\prime \prime \prime}+\left[\frac{1}{R^{3}}(E I)^{\prime \prime}+\frac{2 E I}{R^{3}}\right] u^{\prime \prime}+\frac{2}{R^{3}}(E I)^{\prime} u^{\prime} \\
& \quad+\left[\frac{(E I)^{\prime \prime}}{R^{3}}+\frac{E I}{R^{3}}+\frac{E A}{R}\right] u-\left(\frac{E A}{R}\right) w^{\prime}-\rho R \omega^{2}\left\{A u-\frac{1}{R^{2}}\left[I\left(w+u^{\prime}\right)\right]^{\prime}\right\}=0 . \tag{2}
\end{align*}
$$

In the above equations each prime denotes one differentiation with respect to dimensionless coordinate variable $x\left(=\theta / \theta_{o}\right)$. The variables R, A and I are the curvature radius, cross-sectional area, and second area moment of inertia of the section of arch and E, ρ, ω are Young's modulus, density and natural frequency of the arch, respectively. In order to simplify the analysis, the following parameters are introduced:

$$
A(x)=A_{o} a(x), \quad I(x)=I_{o} H(x), \quad S_{r}=R \theta_{o} / \kappa, \quad \kappa=\sqrt{I_{o} / A_{o}}, \quad \lambda^{2}=\omega^{2}\left(\frac{\rho R^{4}}{E I_{o}}\right),
$$

where S_{r} represents the slenderness ratio of the arch, κ is the radius of gyration and λ and ω are the non-dimensional natural frequency and natural frequency, respectively. By introducing these parameters, one can rewrite governing equations (1) and (2) as

$$
\begin{align*}
& S_{r}^{2}\left(a w^{\prime \prime}+a^{\prime} w^{\prime}-\theta_{o} a^{\prime} u-\theta_{o} a u^{\prime}\right)+\lambda^{2}\left\{\left[a+\left(\frac{\theta_{o}}{S_{r}}\right)^{2} H\right] w+\left(\frac{\theta_{o} H}{S_{r}^{2}}\right) u^{\prime}\right\}=0 \tag{3}\\
& H u^{\prime \prime \prime \prime}+2 H^{\prime} u^{\prime \prime \prime}+\left(H^{\prime \prime}+2 H \theta_{o}^{2}\right) u^{\prime \prime}+2 H^{\prime} \theta_{o}^{2} u^{\prime}+\left[\theta_{o}^{2} H^{\prime \prime}+\theta_{o}^{4} H+\left(\theta_{o} S_{r}\right)^{2} a\right] u \\
& \quad-\theta_{o} a S_{r}^{2} w^{\prime}+\lambda^{2}\left\{\frac{1}{S_{r}^{2}}\left[H^{\prime}\left(\theta_{o} w+u^{\prime}\right)+H\left(\theta_{o} w^{\prime}+u^{\prime \prime}\right)\right]-a u\right\}=0 \tag{4}
\end{align*}
$$

2.2. $D Q$ analogues of governing equations

In order to construct the DQ analogues of the governing equations, one must define the degrees of freedom for the problem under consideration. For the present DQ methodology, the boundary degrees of freedom are displacements (u, w) and the second derivative of the radial displacement $K\left(=\mathrm{d}^{2} u / \mathrm{d} x^{2}\right)$. Whereas on the interior domain, only the displacement components (u, w) are chosen as degrees of freedom [8-10]. That is

$$
\left\{U_{b}\right\}=\left[\begin{array}{llllll}
u_{1} & u_{N} & w_{1} & w_{N} & K_{1} & K_{N} \tag{5}
\end{array}\right]^{\mathrm{T}}, \quad\left\{U_{d}\right\}=\left[\left[u_{2} \ldots u_{N-1}\right]\left[w_{2} \ldots w_{N-1}\right]\right]^{\mathrm{T}} .
$$

The subscripts b and d stand for boundary and interior domain degrees of freedom, respectively. Subscripts $1,2, \ldots, N-1, N$ are grid point numbers. Thus, the grid points 1 and N represent the grid at the ends of the arch where boundary conditions apply.

Two important factors that affect the accuracy of the DQ method are the accuracy of weighting coefficients and the choice of sampling points. Employing the present definitions for the degrees of freedom, no special treatments are needed to evaluate the weighting coefficients. This is not the case for other DQ methods such as those that employ the first order derivative as a field variable
on the boundary. In the present analysis, an explicit algorithm is used. The algorithm is computationally efficient and yields the weighting coefficients most accurately, irrespective of the number and positions of sampling points [7]. In addition, there are no restrictions on the location of sampling points, and any grid generation rule for conventional DQ methods can be used for locating the sampling points. The description of how to evaluate the weighting coefficients is given in Appendix A.

Based on the choice of degrees of freedom the DQ analogues of the governing equations (3) and (4) becomes, respectively,

$$
\begin{gather*}
S_{r}^{2}\left(a_{i} \sum_{m=1}^{N} B_{i m} w_{m}+a_{i}^{\prime} \sum_{m=1}^{N} A_{i m} w_{m}-\theta_{o} a_{i}^{\prime} u_{i}-\theta_{o} a_{i} \sum_{m=1}^{N} A_{i m} u_{m}\right) \\
+\lambda^{2}\left\{\left[a_{i}+\left(\frac{\theta_{o}}{S_{r}}\right)^{2} H_{i}\right] w_{i}+\left(\frac{\theta_{o} H_{i}}{S_{r}^{2}}\right) \sum_{m=1}^{N} A_{i m} u_{m}\right\}=0 \tag{6}\\
H_{i} \sum_{n=1}^{N} \sum_{m=2}^{N-1} B_{i m} B_{m n} u_{n}+2 H_{i}^{\prime} \sum_{n=1}^{N} \sum_{m=2}^{N-1} A_{i m} B_{m n} u_{n}+\left(2 \theta_{o}^{2} H_{i}+H_{i}^{\prime \prime}\right) \sum_{m=1}^{N} B_{i m} u_{m} \\
+2 H_{i}^{\prime} \theta_{o}^{2} \sum_{m=1}^{N} A_{i m} u_{m}+\left[H_{i} \theta_{o}^{4}+H_{i}^{\prime \prime} \theta_{o}^{2}+\left(\theta_{o} S_{r}\right)^{2} a_{i}\right] u_{i}+\left(H_{i} B_{i 1}+2 H_{i}^{\prime} A_{i 1}\right) K_{1} \\
+\left(H_{i} B_{i N}+2 H_{i}^{\prime} A_{i N}\right) K_{N}-K_{i}\left(\theta_{o}^{4}\right) u_{i}-\theta_{o} S_{r}^{2} a_{i} \sum_{m=1}^{N} A_{i m} w_{m} \\
+\lambda^{2}\left\{\frac{1}{S_{r}^{2}}\left[H_{i}^{\prime}\left(\theta_{o} w_{i}+\sum_{m=1}^{N} A_{i m} u_{m}\right)+H_{i}\left(\theta_{o} \sum_{m=1}^{N} A_{i m} w_{m}+\sum_{m=1}^{N} B_{i m} u_{m}\right)\right]-a_{i} u_{i}\right\}=0, \tag{7}
\end{gather*}
$$

for $i=1,2, \ldots, N$, where N is the number of grid points. Eqs. (6) and (7) can be assembled in matrix form as

$$
\left[\left[S_{d b}\right] \quad\left[S_{d d}\right]\right]\left\{\begin{array}{l}
\left\{U_{b}\right\} \tag{8}\\
\left\{U_{d}\right\}
\end{array}\right\}-\lambda^{2}\left[\left[M_{d b}\right] \quad\left[M_{d d}\right]\right]\left\{\begin{array}{l}
\left\{U_{b}\right\} \\
\left\{U_{d}\right\}
\end{array}\right\}=\{0\} .
$$

Using the definition of boundary and domain degrees of freedom, i.e., Eq. (5), the elements of matrix coefficients in the above equation can be easily derived.

2.3. Boundary conditions

Some important types of boundary conditions that may be applied to a circular arch include the following.

2.3.1. Elastically restrained against rotation (SR)

For this type of boundary condition the displacement components are fixed and the bending moment is balanced by bending moment produced by an elastic torsional spring at
the support:

$$
\begin{equation*}
w=0, \quad u=0, \quad \frac{E I}{R} \frac{\mathrm{~d}^{2} u}{\mathrm{~d} \theta^{2}}+k_{t} n_{b} \frac{\mathrm{~d} u}{\mathrm{~d} \theta}=0 \tag{9}
\end{equation*}
$$

where $n_{b}=-1$ for $\theta=0$ and $n_{b}=1$ for $\theta=\theta_{o} ; k_{t}$ is the elastic coefficient of support.
2.3.2. Clamped (C)

$$
\begin{equation*}
w=0, \quad u=0, \quad \frac{\mathrm{~d} u}{\mathrm{~d} \theta}=0 \tag{10}
\end{equation*}
$$

2.3.3. Transversally guided support (G)

An end with this type of boundary condition has fixed tangential and rotational degrees of freedom. The radial displacement has no constraint and therefore one has

$$
\begin{equation*}
w=0, \quad \frac{\mathrm{~d} u}{\mathrm{~d} \theta}=0, \quad E I\left(\frac{\mathrm{~d}^{3} u}{\mathrm{~d} \theta^{3}}+\frac{\mathrm{d}(E I)}{\mathrm{d} \theta}\right)\left(\frac{\mathrm{d}^{2} u}{\mathrm{~d} \theta^{2}}+u\right)=0 . \tag{11}
\end{equation*}
$$

2.3.4. Free end (F)

Since no constraints are present for any movement at the arch ends, no reaction forces, i.e., axial force, shear force and bending moment, will be produced:

$$
\begin{equation*}
\frac{\mathrm{d} w}{\mathrm{~d} \theta}-u=0, \quad E I\left(\frac{\mathrm{~d}^{3} u}{\mathrm{~d} \theta^{3}}+\frac{\mathrm{d} u}{\mathrm{~d} \theta}\right)+\frac{\mathrm{d}(E I)}{\mathrm{d} \theta}\left(\frac{\mathrm{~d}^{2} u}{\mathrm{~d} \theta^{2}}+u\right)=0, \quad \frac{\mathrm{~d}^{2} u}{\mathrm{~d} \theta^{2}}+u=0 \tag{12}
\end{equation*}
$$

2.4. $D Q$ analogues of boundary conditions

Similar to the governing equations, the DQ analogues of the boundary conditions are developed.

2.4.1. Zero displacement

$$
\begin{equation*}
w_{b}=0, \quad u_{b}=0 \quad \text { for } b=1 \text { or } N . \tag{13}
\end{equation*}
$$

2.4.2. Zero slope

The zero slope boundary conditions are implemented through the curvature as [8-10]

$$
\begin{equation*}
K_{b}-\sum_{n=1}^{N} \sum_{m=m_{l}}^{m_{u}} A_{b m} A_{m n} u_{n}=0 \quad \text { for } b=1 \text { or } N \tag{14}
\end{equation*}
$$

where $m_{l}=2$ if the end at $\theta=0$ is clamped, otherwise it is equal to 1 ; also $m_{u}=N-1$ if the end at $\theta=\theta_{o}$ is clamped, otherwise it is set to N.

2.4.3. Bending moment

The DQ analogues of a zero bending moment boundary condition and that which is balanced with the moment of an elastic spring at a boundary point, can be explained by an equation in the form of

$$
\begin{equation*}
H_{b} K_{b}+\theta_{o}^{2} u_{b}+n_{b} \theta_{o} K_{b T} \sum_{m=1}^{N} A_{b m} u_{m}=0 \quad \text { for } b=1 \text { or } N \tag{15}
\end{equation*}
$$

where $K_{b T}=k_{b t} R /\left(E I_{o}\right)$.

2.4.4. Zero axial force

$$
\begin{equation*}
\sum_{m=1}^{N} A_{b m} w_{m}-\theta_{o} u=0 \quad \text { for } b=1 \text { or } N \tag{16}
\end{equation*}
$$

2.4.5. Zero shear force

$$
\begin{align*}
& H_{b}\left(\sum_{n=1}^{N} \sum_{m=2}^{N-1} A_{b m} B_{m n} u_{n}+\theta_{o}^{2} \sum_{m=1}^{N} A_{b m} u_{m}\right)+H_{b} A_{b 1} K_{1} \\
& \quad+H_{b} A_{b N} K_{N}+H_{b}^{\prime}\left(K_{b}+\theta_{o}^{2} u_{b}\right)=0 \tag{17}
\end{align*}
$$

for $b=1$ or N. The assembled form of the boundary conditions can also be represented in matrix form as

$$
\begin{equation*}
\left[S_{b b}\right]\{U\}_{b}+\left[S_{b d}\right]\{U\}_{d}=\{0\} \tag{18}
\end{equation*}
$$

Eliminating the boundary degrees of freedom from Eqs. (8) and (18) one has

$$
\begin{equation*}
[S]\left\{U_{d}\right\}-\lambda^{2}[M]\left\{U_{d}\right\}=\{0\} \tag{19}
\end{equation*}
$$

where $[S]=\left[S_{d d}\right]-\left[S_{d b}\right]\left[S_{b b}\right]^{-1}\left[S_{b d}\right]$ and $[M]=\left[M_{d d}\right]-\left[M_{d b}\right]\left[S_{b b}\right]^{-1}\left[S_{b d}\right]$. From Eq. (19), one can obtain both the natural frequencies and the associated mode shapes.

3. The approximate theory

As an alternative to the previously developed general governing equations of thin arches, an "approximate theory," based on assuming negligible tangential inertias can be developed. After matrix partitioning of Eq. (19), the final system of equations for thin circular arches based on this approximate theory may be written as

$$
\left[\begin{array}{cc}
{\left[S_{u u}\right]} & {\left[S_{u w}\right]} \tag{20}\\
{\left[S_{w u}\right]} & {\left[S_{w w}\right]}
\end{array}\right]\left\{\begin{array}{l}
\left\{U_{d u}\right\} \\
\left\{U_{d w}\right\}
\end{array}\right\}-\lambda^{2}\left[\begin{array}{cc}
{\left[M_{u u}\right]} & 0 \\
0 & 0
\end{array}\right]\left\{\begin{array}{l}
\left\{U_{d u}\right\} \\
\left\{U_{d w}\right\}
\end{array}\right\}=\{0\}
$$

Using this equation, one can easily eliminate the tangential displacement components and obtain the simplified governing equation as

$$
\begin{equation*}
[\bar{S}]\left\{U_{d u}\right\}-\lambda^{2}\left[M_{u u}\right]\left\{U_{d u}\right\}=\{0\} \tag{21}
\end{equation*}
$$

where $[\bar{S}]=\left[S_{u u}\right]-\left[S_{u w}\right]\left[S_{w w}\right]^{-1}\left[S_{w u}\right]$. As one can expect, the slenderness ratio that appears in governing Eq. (21) should be taken very large ($S_{r} \geqslant 10^{4}$), since the formulation is based on extensible theory. Some examples for both shallow and deep arches are considered to prove the accuracy of this formulation.

4. Domain decomposition technique

When the coefficients in the governing partial differential equations suddenly change through the domain of interest, then domain decomposition becomes a necessity (see Fig. 2). For such problems, the vector of boundary degrees of freedom should be modified to include the displacements and the curvatures at the common sections of each two adjacent sub-domains. For example, consider the section ' i ' of the two sub-domains ' i ' and ' $i+1$ ' in Fig. 2. The new boundary degrees of freedom at this common section are $\left[u_{i c} w_{i c} K_{i L} K_{i R}\right]$. Subscripts ' c ', ' L ' and ' R ' stand for common, left and right of a common section ' i '. Therefore, the boundary degrees of freedom become

$$
\left.\begin{array}{rl}
\left\{U_{b}\right\}= & {\left[\begin{array}{ll}
{\left[u_{1}\right.} & u_{N}
\end{array}\right]\left[\begin{array}{llllll}
w_{1} & w_{N}
\end{array}\right]}
\end{array}\left[\begin{array}{ll}
K_{1} & K_{N}
\end{array}\right]\left[\begin{array}{llll}
u_{1 c} & w_{1 c} & K_{1 L} & K_{1 R}
\end{array}\right]\right\}
$$

where N_{c} is the number of common sections of the individual sub-domains.
The governing equations of each sub-domain is similar to those of a single domain obtained in Sections 2.1 and 2.2. In addition to the external boundary conditions, the geometric and physical compatibility should be satisfied at the common sections of the two adjacent sub-domains. The geometric compatibility conditions include the continuity of tangential and radial displacements, and the slopes. The continuity of the displacement components is automatically satisfied, since they are chosen as the degrees of freedom. The continuity of slope at the interface of sub-domains ' i ' and ' $i+1$ ' is written as

$$
\begin{equation*}
\left.\left(\frac{\mathrm{d} u}{\mathrm{~d} \theta}+\frac{w}{R}\right)\right|^{(i)}-\left.\left(\frac{\mathrm{d} u}{\mathrm{~d} \theta}+\frac{w}{R}\right)\right|^{(i+1)}=0 \tag{23}
\end{equation*}
$$

with its DQ analogue of

$$
\begin{equation*}
\left(\frac{1}{\theta_{i}}\right) \sum_{m=1}^{N_{i}} A_{b_{i} m}^{(i)} u_{m}^{(i)}+\frac{w_{b_{i}}^{(i)}}{R_{i}}-\left(\frac{1}{\theta_{i+1}}\right) \sum_{m=1}^{N_{i+1}} A_{b_{i+1} m}^{(i+1)} u_{m}^{(i+1)}-\frac{w_{b_{i+1}}^{(i+1)}}{R_{i+1}}=0 . \tag{24}
\end{equation*}
$$

Fig. 2. An arbitrary arch with sudden changes in geometry. The arch is made of sub-circular arches at different sections.

In the above, N_{i} represents the total number of grid points in sub-domain ' i ', and b_{i} represents the end grid point in i th sub-domain. Due to the fact that the number of grid points in each subdomain may be unequal, their weighting coefficients are different.

Since the DQ method has solved the strong form of the governing equations, the compatibility conditions in a strong form become a necessity. The continuity of axial forces, bending moments, and shear forces and their respective DQ analogue become as follows:

Axial force

$$
\begin{gather*}
\left.\frac{A E}{R}\left(\frac{\mathrm{~d} w}{\mathrm{~d} \theta}-u\right)\right|^{(i)}-\left.\frac{A E}{R}\left(\frac{\mathrm{~d} w}{\mathrm{~d} \theta}-u\right)\right|^{(i+1)}=0 \tag{25}\\
\frac{A_{b_{i}} E^{(i)}}{R_{i}}\left[\frac{1}{\theta_{i}} \sum_{m=1}^{N_{i}} A_{b_{i} m}^{(i)} w_{m}^{(i)}-u_{b_{i}}^{(i)}\right]-\frac{A_{b_{i+1}} E^{(i+1)}}{R_{i+1}}\left[\frac{1}{\theta_{i+1}} \sum_{m=1}^{N_{i+1}} A_{b_{i+1} m}^{(i+1)} w_{m}^{(i+1)}-u_{b_{i+1}}^{(i+1)}\right]=0 . \tag{26}
\end{gather*}
$$

Bending moment

$$
\begin{gather*}
\left.\frac{E I}{R^{2}}\left(\frac{\mathrm{~d}^{2} u}{\mathrm{~d} \theta^{2}}+u\right)\right|^{(i)}-\left.\frac{E I}{R^{2}}\left(\frac{\mathrm{~d}^{2} u}{\mathrm{~d} \theta^{2}}+u\right)\right|^{(i+1)}=0, \tag{27}\\
\frac{E^{(i)} I_{b_{i}}}{R_{i}^{2}}\left[\frac{1}{\theta_{i}^{2}} K_{b_{i}}^{(i)}+u_{b_{i}}^{(i)}\right]-\frac{E^{(i+1)} I_{b_{i+1}}}{R_{i+1}^{2}}\left[\frac{1}{\theta_{i+1}^{2}} K_{b_{i+1}}^{(i+1)}+u_{b_{i+1}}^{(i+1)}\right]=0 . \tag{28}
\end{gather*}
$$

Shear force

$$
\begin{gather*}
\left.\frac{1}{R^{3}}\left[E I\left(\frac{\mathrm{~d}^{3} u}{\mathrm{~d} \theta^{3}}+\frac{\mathrm{d} u}{\mathrm{~d} \theta}\right)+\frac{\mathrm{d}(E I)}{\mathrm{d} \theta}\left(\frac{\mathrm{~d}^{2} u}{\mathrm{~d} \theta^{2}}+u\right)\right]\right|^{(i)} \\
-\left.\frac{1}{R^{3}}\left[E I\left(\frac{\mathrm{~d}^{3} u}{\mathrm{~d} \theta^{3}}+\frac{\mathrm{d} u}{\mathrm{~d} \theta}\right)+\frac{\mathrm{d}(E I)}{\mathrm{d} \theta}\left(\frac{\mathrm{~d}^{2} u}{\mathrm{~d} \theta^{2}}+u\right)\right]\right|^{(i+1)}=0, \tag{29}\\
\frac{E^{(i)}}{\left(R_{i} \theta_{i}\right)^{3}}\left[I_{b_{i}} \sum_{n=1}^{N_{i}} \sum_{m=2}^{N_{i}-1} A_{b_{i} m}^{(i)} B_{m n}^{(i)} u_{n}^{(i)}+I_{b_{i}} A_{b_{i} 1}^{(i)} K_{1}^{(i)}+I_{b_{i}} A_{b_{i} N_{i}}^{(i)} K_{N_{i}}^{(i)}+I_{b_{i}}^{\prime} K_{b_{i}}^{(i)}+I_{b_{i}} \theta_{i}^{2} \sum_{m=1}^{N_{i}} A_{b_{i} m}^{(i)} u_{m}^{(i)}\right. \\
\left.+I_{b_{i}}^{\prime} \theta_{i}^{2} u_{b_{i}}^{(i)}\right]-\frac{E^{(i+1)}}{\left(R_{i+1} \theta_{i+1}\right)^{3}}\left[I_{b_{i+1}} \sum_{n=1}^{N_{i+1}} \sum_{m=2}^{N_{i+1}-1} A_{b_{i+1} m}^{(i+1)} B_{m n}^{(i+1)} u_{n}^{(i+1)}+I_{b_{i+1}} A_{b_{i+1} 1}^{(i+1)} K_{1}^{(i+1)}\right. \\
\left.+I_{b_{i+1}} A_{b_{i+1} N_{i+1}}^{(i+1)} K_{N_{i+1}}^{(i+1)}+I_{b_{i+1}}^{\prime} K_{b_{i+1}}^{(i+1)}+I_{b_{i+1}} \theta_{i+1}^{2} \sum_{m=1}^{N_{i+1}} A_{b_{i+1} m}^{(i+1)} u_{m}^{(i+1)}+I_{b_{i+1}}^{\prime} \theta_{i+1}^{2} u_{b_{i+1}}^{(i+1)}\right]=0 . \tag{30}
\end{gather*}
$$

Using the analogues equations Eqs. (24), (26), (28) and (30), in addition to the external boundary conditions, one has an assembled system of equations similar to Eq. (18). The assembled form of the governing equations has a similar form to Eq. (8). Therefore similar to the procedure used for a single domain, the boundary degrees of freedom, i.e., $\left\{U_{b}\right\}$, should be eliminated from the assembled governing equations. The resulting eigenvalue problems should then be solved to obtain the natural frequencies and their related mode shapes.

5. Numerical results

All numerical results are based on the extensible theory. The natural frequencies presented in Tables 1-10 are non-dimensionalized. To obtain the results for inextensible arches, in all related examples the value of the slenderness ratio is chosen to be $S_{r}=10^{4}$. Due to the fact that most previous results are based on inextensible theory, most of the examples are chosen with the inextensible assumption to verify the accuracy of the method. The convergence and the stability of the results are proved in Sections 5.1 and 5.2 for some different boundary conditions and geometries for the arches under consideration.

5.1. Uniform circular arch

A circular arch with different opening angles and under conditions with at least one edge free (the boundary condition to which DQM is most sensitive) is considered. The convergence and the stability of the evaluated fundamental natural frequencies are shown in Table 1. As shown, well converged results can be obtained with $N=9$, however results converged to six significant digits can be obtained with $N=14$. The accuracy of these results is checked by comparing them with those of other numerical methods in Table 2. It is noteworthy to see that the results from the present methodology are very close to those of other techniques such as GDQR [15]. The results are slightly greater than those of the Cell Discretization Method (CDM) which predicts a lower bound to the fundamental frequency [1].

5.2. Parabolically variable thickness ring

Gutierrez and Laura [11] have studied the fundamental natural frequency of a completely free and a simply supported ring as shown in Fig. 3. These examples have been considered here and the

Table 1
Convergence and stability of non-dimensional fundamental natural frequencies $\left(\lambda_{i}\right)$ for a circular arch under different opening angles and boundary conditions

Boundary conditions	θ_{o}	Number of grid points (N)					
		9	11	13	14	15	19
C-F	10°	115.456	115.496	115.496	115.496	115.496	115.496
	90°	1.4971	1.4982	1.4982	1.4982	1.4982	1.4982
	180°	0.4291	0.4352	0.4353	0.4352	0.4352	0.4352
S-F	10°	502.857	504.036	503.988	503.989	503.989	503.989
	90°	4.8971	4.8866	4.8868	4.8868	4.8868	4.8868
	180°	0.9400	0.9180	0.9188	0.9188	0.9188	0.9188
	10°	738.543	733.441	733.652	733.649	733.649	733.649
	90°	8.5342	8.3851	8.3913	8.3912	8.3912	8.3912
	180°	1.9643	1.8307	1.8374	1.8372	1.8372	1.8372

Table 2
Non-dimensional fundamental natural frequency $\left(\lambda_{1}\right)$ of a uniform circular arch under different boundary conditions

θ_{o}	C-F				S-F		F-F	
	Present	GDQ	FEM	CDM	Present	GDQ	Present	GDQ
10°	115.4953	115.4953			503.9888	503.9888	733.6490	733.6490
20°	28.9274	28.9274	28.920	28.196	124.4238	124.4238	182.8018	182.8019
30°	12.8964	12.8964			54.1996	54.1996	80.8026	80.8026
40°	7.2857	7.2857	7.2827	7.1035	29.6905	29.6905	45.1137	45.1137
60°	3.2784	3.2784	3.2738	3.197	12.3434	12.3434	19.6501	19.6501
80°	1.8763	1.8763	1.8766	1.8303	6.4319	6.4319	10.7730	10.7730
90°	1.4982	1.4982			4.8868	4.8868	8.3912	8.3912
100°	1.2279	1.2279	1.2277	1.195	3.8080	3.8080	6.6961	6.6961
120°	0.8762	0.8762	0.8761	0.8544	2.4564	2.4564	4.5088	4.5088
140°	0.6647	0.6647	0.6647	0.648	1.6885	1.6885	3.2122	3.2122
160°	0.5282	0.5282	0.5283	0.510	1.2202	1.2202	2.3882	2.3882
180°	0.4352	0.4352	0.4355	0.4242	0.9188	0.9188	1.8372	1.8372

Table 3
Non-dimensional fundamental natural frequency $\left(\lambda_{1}\right)$ of a parabolically variable thickness ring: (a) simply supported and, (b) completely free ring

α	Number of grid points								ORR [11]	CDQ [11]
	5	7	9	11	13	14	15	24		
(a) Simply supported ring										
1	2.7843	2.2670	2.2668	2.2667	2.2667	2.2667	2.2667	2.2667	2.274	2.268
1.1	2.7953	2.4134	2.4136	2.4136	2.4136	2.4136	2.4136	2.4136	2.416	2.417
1.2	2.7710	2.5573	2.5567	2.5567	2.5567	2.5567	2.5567	2.5567	2.557	2.561
1.3	2.7119	2.7021	2.6964	2.6965	2.6965	2.6965	2.6965	2.6965	2.697	2.701
1.4	2.6169	2.8512	2.8330	2.8334	2.8334	2.8334	2.8334	2.8334	2.834	2.839
1.5	2.4835	3.0077	2.9668	2.9676	2.9676	2.9676	2.9676	2.9676	2.970	2.976
(b) Completely free ring										
1	2.7344	2.6822	2.6833	2.6833	2.6833	2.6833	2.6833	2.6833	2.687	2.686
1.1	2.8994	2.8482	2.8451	2.8452	2.8452	2.8452	2.8452	2.8452	2.846	2.849
1.2	3.0279	3.0182	3.0062	3.0062	3.0062	3.0062	3.0062	3.0062	3.006	3.010
1.3	3.1271	3.1849	3.1668	3.1665	3.1665	3.1665	3.1665	3.1665	3.167	3.171
1.4	3.2023	3.3450	3.3270	3.3262	3.3263	3.3263	3.3263	3.3263	3.326	3.332
1.5	3.2596	3.4948	3.4863	3.4858	3.4858	3.4858	3.4858	3.4858	3.486	3.493

results are shown in Table 3. Also, the results from the optimized Rayleigh-Ritz (ORR) method and conventional DQ (CDQ) methodology as presented by Gutierrez and Laura are shown in this table. For both cases, the ring has a rectangular cross-section with constant width and a parabolic variable thickness according to $h(x)=h_{o}\left[-\left(4 / \pi^{2}\right)(\alpha-1) x^{2}+(4 / \pi)(\alpha-1) x+1\right]$, where $x=\theta / \theta_{o}$

Table 4
Non-dimensional natural frequencies for an unsymmetric arch under different boundary conditions

	$\alpha=0.1$		$\alpha=0.2$		$\alpha=0.3$		$\alpha=0.4$	
	Present	GDQR [15]						
S-S (λ_{1})								
$\theta_{o}=10^{\circ}$	1290.485	1290.485	1281.335	1281.336	1265.764	1265.767	1243.234	1243.238
20°	320.7631	320.7631	318.4851	318.4851	314.6083	314.6084	308.9986	308.9987
40°	78.3731	78.3731	77.8126	77.8126	76.8588	76.8588	75.4785	75.4785
60°	33.5461	33.5461	33.3034	33.3034	32.8904	32.8904	32.2929	32.2928
80°	17.9206	17.9206	17.7890	17.7890	17.5649	17.5649	17.2406	17.2406
$\mathrm{C}-\mathrm{C}\left(\lambda_{1}\right)$								
$\theta_{o}=10^{\circ}$	2016.983	2016.983	2001.812	2001.813	1975.993	1975.996	1938.632	1938.637
20°	502.3033	502.3033	498.5259	498.5260	492.0976	492.0978	482.7954	482.7959
40°	123.6698	123.6698	122.7406	122.7406	121.1591	121.1592	118.8708	118.8708
60°	53.6074	53.6075	53.2053	53.2053	52.5208	52.5209	51.5304	51.5305
80°	29.1456	29.1456	28.9275	28.9275	28.5564	28.5564	28.0193	28.0193
C-F (λ_{1})								
$\theta_{o}=10^{\circ}$	101.6757	101.6757	88.4809	88.4809	75.8416	75.8419	63.6878	63.6881
20°	25.4671	25.4671	22.1631	22.1631	18.9979	18.9980	15.9531	15.9544
40°	6.4152	6.4152	5.5839	5.5839	4.7872	4.7873	4.0207	4.0211
60°	2.8875	2.8875	2.5140	2.5140	2.1560	2.1560	1.8114	1.8116
80°	1.6532	1.6532	1.4399	1.4399	1.2354	1.2354	1.0385	1.0385
C-F (λ_{2})								
$\theta_{o}=10^{\circ}$	692.2050	692.2051	660.9591	660.9595	626.7909	626.7922	589.3152	589.2368
20°	171.1086	171.1086	163.2148	163.2150	154.5999	154.6006	145.1560	145.1512
40°	41.0089	41.0089	38.9736	38.9737	36.7690	36.7692	34.3702	34.3693
60°	17.1390	17.1390	16.2107	16.2108	15.2158	15.2158	14.1445	14.1441
80°	8.9728	8.9728	8.4461	8.4461	7.8878	7.8878	7.2934	7.2932
S-F (λ_{1})								
$\theta_{o}=10^{\circ}$	489.2786	489.2786	472.9768	472.9768	454.7679	454.7681	434.2522	434.2458
20°	120.6608	120.6608	116.5046	116.5046	111.8773	111.8774	106.6801	106.6792
40°	28.6833	28.6833	27.5837	27.5837	26.3735	26.3735	25.0296	25.0296
60°	11.8668	11.8668	11.3540	11.3540	10.7979	10.7979	10.1893	10.1893
80°	6.1535	6.1535	5.8585	5.8585	5.5431	5.5431	5.2029	5.2029
S-F (λ_{2})								
$\theta_{o}=10^{\circ}$	1622.040	1622.047	1600.490	1600.486	1572.893	1572.888	1538.571	1538.576
20°	403.7542	403.7565	398.2833	398.2820	391.2886	391.2870	382.5936	382.5978
40°	99.2894	99.2899	97.8566	97.8563	96.0366	96.0363	93.7826	93.7838
60°	43.0319	43.0322	42.3657	42.3656	41.5270	41.5270	40.4947	40.4953
80°	23.4387	23.4389	23.0517	23.0516	22.5692	22.5692	21.9795	21.9798

and α is the taper parameter. To obtain the fundamental natural frequency, Gutierrez and Laura have modelled one-half and one-quarter of the ring, respectively, for simply supported and the free boundary conditions cases. This is followed here as well, but one should note that for the case

Table 5
The first eight non-dimensional natural frequencies $\left(\theta_{o}^{2} \lambda_{i}\right)$ of a simply supported uniform circular arch at different slenderness ratio $\left(\theta_{o}=90^{\circ}\right)$

Method	S_{r}	Mode sequences							
		1	2	3	4	5	6	7	8
(a) Without rotary inertia effect									
Present	11.78	18.081	29.923	45.535	71.514	89.770	110.64	148.23	155.88
Ref. [3]		18.08	29.93	45.54	71.52	89.76	110.7	148.23	155.9
Present	23.56	33.320	33.560	81.481	84.892	152.43	153.78	225.72	241.66
Ref. [3]		33.32	33.56	81.49	84.89	152.5	153.8	225.7	241.7
Present	47.12	33.819	61.832	90.977	144.83	171.24	241.43	305.47	350.89
Ref. [3]		33.82	61.84	90.98	144.8	171.2	241.5	305.5	351.8
Present	117.8	33.939	78.710	151.84	174.56	247.05	345.16	414.02	479.43
Ref. [3]		33.94	78.71	151.9	174.6	247.1	345.4	414.1	480.1
Present	251.3	33.956	79.719	152.11	235.26	349.19	380.16	486.28	624.09
Ref. [3]		33.96	79.72	152.1	235.3	349.4	380.2	486.9	625.4
Present	377.0	33.958	79.851	152.14	237.06	349.39	466.89	585.41	625.36
Ref. [3]		33.96	79.85	152.2	237.1	349.7	467.5	585.6	626.8
(b) Including rotary inertia effect									
Present	23.56	32.547	33.294	79.536	80.523	136.96	150.84	203.31	223.32
Ref. [4]		32.55	33.30	79.54	80.5	137.0	150.9	203.4	223.3
Present	47.12	33.601	61.587	89.549	141.77	168.88	229.84	304.24	326.64
Ref. [4]		33.60	61.59	89.56	141.8	168.9	229.9	304.3	326.9
Present	94.25	33.870	77.486	142.76	150.39	241.29	317.39	354.06	466.44
Ref. [4]		33.87	77.49	142.8	150.4	241.4	317.4	354.3	467.1
Present	188.5	33.938	79.444	151.74	229.34	295.40	347.16	478.28	610.10
Ref. [4]		33.94	79.45	151.8	229.34	295.4	347.4	478.9	611.1
Present	377.0	33.955	79.831	152.06	236.86	348.97	466.21	585.20	624.09
Ref. [4]		33.96	79.83	152.1	236.9	349.0	466.8	585.3	625.1

of a completely free ring, the boundary conditions in the present formulation become guided supports for both ends. As can be seen in Table 3, accurate solutions can be obtained with only nine grid points for all values of taper parameter α. Also, it is interesting to note that the converged fundamental natural frequencies are always slightly less than those of the RayleighRitz method, which is fruitful, since the former gives an upper bound of fundamental natural frequencies. It is interesting that the δ-technique, employed by Gutierrez and Laura produces

Table 6
The first four non-dimensional natural frequencies $\left(\theta_{o}^{2} \lambda_{i}\right)$ for a simply supported unsymmetric circular arch at various slenderness ratios: (a) without rotary inertia effect, (b) including rotary inertia ($\theta_{o}=90^{\circ}$)

S_{r}	(a)				(b)			
	Mode sequences				Mode sequences			
	1	2	3	4	1	2	3	4
$\alpha=0.2$								
10	15.7321	27.5084	41.7016	61.9394	15.0512	26.4509	36.6221	59.8374
20	28.4944	33.0362	69.7577	83.4926	28.1055	32.1210	68.5767	76.6721
40	33.3846	54.1716	87.5759	131.7111	33.0889	53.9646	85.5789	130.1944
100	33.5913	77.3912	148.9517	151.8941	33.5420	77.1428	148.2080	151.3740
200	33.6177	78.8493	150.6174	229.7436	33.6053	78.7802	150.3466	229.1882
400	33.6242	79.1319	150.7037	234.8868	33.6211	79.1144	150.6357	234.7231
500	33.6250	79.1641	150.7135	235.1967	33.6230	79.1528	150.6699	235.0911
1000	33.6261	79.2064	150.7264	235.5594	33.6256	79.2036	150.7155	235.5328
10000	33.6264	79.2202	150.7306	235.6682	33.6264	79.2202	150.7306	235.6682
$\alpha=0.4$								
10	15.3808	27.2389	41.0108	61.7392	14.6229	26.2164	36.2061	59.1208
20	27.4516	33.0317	69.2042	81.4075	26.9219	32.2817	68.1048	74.9140
40	32.2224	53.8479	85.6098	130.0347	31.9341	53.6324	128.3776	149.8200
100	32.5317	75.2261	144.2728	151.5037	32.4839	74.9931	143.4350	151.1600
200	32.5682	76.5783	146.0861	223.2404	32.5562	76.5140	145.8354	222.7171
400	32.5741	76.8284	146.1292	227.5854	32.5771	76.8448	146.1922	227.7362
500	32.5782	76.8752	146.2038	228.0233	32.5763	76.8647	146.1634	227.9260
1000	32.5796	76.9152	146.2190	228.3621	32.5791	76.9126	146.2089	228.3376
10000	32.5801	76.9283	146.2239	228.4643	32.5801	76.9283	146.2238	228.4640

results for the tapered ring that are greater than those of the Rayleigh-Ritz method. Excellent rate of convergence and stability of the results for the present method, are other important points.

5.3. Unsymmetrical arch under different boundary conditions

An unsymmetric variable section arch, as shown in Fig. 4, is considered here with classical boundary conditions. The results are compared with those of Liu and Wu [15] for the same problem. The arch cross-sectional height varies as $h(x)=h_{o}[1+\alpha(2 x-1)]$, where α is a taper parameter. One should note that the height ratio at both ends of the arches is $(1+\alpha) /(1-\alpha)$. For example, for the case that $\alpha=0.4$, this ratio becomes 2.33333 , which signifies a sufficiently steep variation. Similarly to Liu and Wu [15], for both ends simply supported or clamped, only the fundamental natural frequencies are to be presented here. For other cases with an edge free, the second natural frequencies are also presented. A wide range of opening angle is considered. Fully converged results with six significant digits are obtained with fifteen grid points. The results are presented in Table 4. Excellent agreement between the solutions of the present algorithm and those of GDQR [15] is achieved.

Table 7
The first four non-dimensional natural frequencies $\left(\lambda_{i}\right)$ for an unsymmetric circular arch $\left(\theta_{o}=90^{\circ}\right)$ for a range of slenderness ratios under two types of boundary conditions

	S_{r}	$\alpha=0.2$				$\alpha=0.4$			
		1	2	3	4	1	2	3	4
(a) $\mathrm{C}-\mathrm{F}$	10	1.1459	5.2464	9.2412	19.0111	0.8281	4.6070	8.5326	18.6866
	20	1.1492	6.1770	15.1378	23.6891	0.8297	5.3199	14.1893	22.5310
	40	1.1500	6.3606	20.9929	32.7188	0.8301	5.4686	19.5914	31.2566
	100	1.1503	6.4065	21.7711	45.1050	0.8302	5.5068	20.3880	43.0568
	200	1.1503	6.4128	21.8426	45.4646	0.8302	5.5121	20.4636	43.4269
	400	1.1503	6.4144	21.8593	45.5306	0.8303	5.5135	20.4813	43.4950
	1000	1.1503	6.4149	21.8614	45.5477	0.8303	5.5138	20.4863	43.5127
	4000	1.1503	6.4149	21.8648	45.5508	0.8303	5.5139	20.4871	43.5158
(b) S-F	10	4.1486	8.4542	17.3218	21.3077	3.6562	7.9851	16.8988	20.9266
	20	4.3709	15.0103	19.7722	38.7134	3.8593	14.0434	19.2201	37.9870
	40	4.4168	17.6033	32.6997	41.1227	3.9032	16.6963	31.2418	39.8390
	100	4.4289	17.8385	39.4780	68.3066	3.9150	16.9810	38.0320	65.7725
	200	4.4307	17.8642	39.6021	69.1713	3.9167	17.0123	38.1732	66.7949
	400	4.4311	17.8704	39.6271	69.2558	3.9171	17.0199	38.2016	66.8930
	1000	4.4312	17.8721	39.6338	69.2758	3.9172	17.0219	38.2091	66.9162
	4000	4.4312	17.8724	39.6350	69.2793	3.9172	17.0223	38.2105	66.9201

5.4. A circular arch at different slenderness ratios with and without rotary inertias and under different boundary conditions

In order to verify the accuracy of the present method for predicting the higher order modes, and also to study the effects of the slenderness ratio and rotary inertia on natural frequencies, a simply supported uniform circular arch is considered again. Twenty grid points are sufficient for results converged to at least five significant digits for the first-eight natural frequencies. The nondimensional natural frequencies are presented in Table 5 with and without considering the rotary inertia effects. The solutions are compared with those of Veletsos et al. [3], and Austin and Veletsos [4]. An excellent agreement is achieved. One can recognize the effects of rotary inertia at higher modes at low S_{r}.

The results for a simply supported unsymmetric variable section circular arch, which include both the effects of slenderness ratio as well as rotary inertia, are presented in Table 6. The crosssectional height varies as $h(x)=h_{o}[1+\alpha(2 x-1)]$. In Table 6 one can also see the effects of inclusion of rotary inertia in calculations of natural frequencies at different values of slenderness ratios. One can see the slenderness ratio has a major effect on the frequencies at higher modes.

Some new results for a variable section, nonsymmetric circular arch with clamped-free and simply-supported free ends are exhibited in Table 7. For all cases in this table, 19 grid points are used to give a solution converged to at least six significant digits. It is interesting to note that for the cases in which one edge is free, the effect of tangential deformation on fundamental natural frequencies becomes negligible. Also, by a comparison of Tables 6 and 7 one can determine the

Table 8
Non-dimensional fundamental frequency $\left(\lambda_{1}\right)$ of a uniform circular arch with ends elastically restrained against rotation

θ_{0}	$K_{T}=0$			$K_{T}=6$			$K_{T}=12$		
	Present	CDM [1]	Galerkin [1]	Present	CDM [1]	Galerkin [1]	Present	CDM [1]	Galerkin [1]
40°	78.558	78.558	78.396	90.954	90.692	91.972	98.014	97.676	100.17
80°	17.964	17.964	17.932	22.788	22.713	23.345	24.711	24.612	25.489
120°	6.9268	6.9268	6.9168	9.5407	9.5073	9.8534	10.337	10.293	10.719
180°	2.2667	2.2667	2.2646	3.6196	3.6061	3.7656	3.9151	3.8977	4.0768
	$K_{T}=24$			$K_{T}=100$			$K_{T}=10^{7}$		
	Present	CDM [1]	Galerkin [1]	Present	CDM [1]	Galerkin [1]	Present	CDM [1]	Galerkin [1]
40°	105.79	105.36	108.83	117.71	117.09	121.23	123.98	123.24	127.26
80°	26.399	26.275	27.283	28.383	28.225	29.268	29.218	29.045	30.061
120°	10.954	10.900	11.356	11.599	11.534	11.778	11.848	11.778	12.225
180°	4.1197	4.0991	4.2825	4.3140	4.2903	4.4710	4.3844	4.3595	4.5387

Table 9
The first 10 non-dimensional natural frequencies $\left(\lambda_{i}\right)$ obtained from the approximate theory

θ_{0}	Mode	S-S			C-C			C-F		
		Present	Exact [5]	DQ [6]	Present	Exact [5]	DQ [6]	Present	Exact [5]	DQ [6]
40°	1	80.000	80.000	80.000	125.79	125.792	125.792	7.462	7.462	7.462
	2	172.00	172.005	172.00	226.91	226.910	226.910	44.611	44.611	44.611
	3	323.00	323.000	323.00	409.20	409.204	409.204	125.845	125.845	125.845
	4	496.47	496.470	496.47	593.04	593.043	593.043	247.243	247.243	247.243
	5	982.65	982.646	728.00	854.66	854.661	854.661	409.204	409.204	409.204
	6	728.00	728.000	982.65	1120.18	1120.18	1120.18	611.678	611.678	611.678
	7	1295.00	1295.00	1294.99	1462.14	1462.14	1462.14	854.661	854.661	854.661
	8	1630.74	1630.74	1630.91	1809.02	1809.02	1809.05	1138.15	1138.15	1138.152
	9	2024.00	2024.00	2025.80	2231.62	2231.62	2232.19	1462.14	1462.14	1462.115
	10	2440.79	2440.80	2420.56	2659.70	2659.73	2653.40	1826.63	1826.63	1825.366
160°	1	4.063	4.063	4.063	7.1898	7.189	7.1898	0.766	0.766	0.766
	2	9.855	9.855	9.855	13.423	13.423	13.4234	2.315	2.315	2.315
	3	19.250	19.250	19.250	24.775	24.775	24.7755	7.197	7.197	7.197
	4	30.107	30.107	30.107	36.239	36.239	36.2388	14.696	14.696	14.696
	5	44.563	44.563	44.563	52.572	52.572	52.5723	24.775	24.775	24.775
	6	60.485	60.485	60.485	69.154	69.154	69.1543	37.404	37.404	37.404
	7	80.000	80.000	80.000	90.517	90.517	90.517	52.572	52.572	52.572
	8	100.988	100.988	100.999	112.189	112.189	112.191	70.277	70.277	70.278
	9	125.562	125.563	125.676	138.596	138.596	138.632	90.517	90.517	90.516
	10	151.615	151.615	150.345	165.345	165.348	164.952	113.290	113.290	113.210

effects of the boundary conditions on the natural frequencies, again, at different values of slenderness ratios.

5.5. Elastically restrained uniform circular arch

In order to examine the accuracy of the methodology for non-classical boundary conditions, a circular arch with both ends elastically restrained against rotation (as shown in Fig. 5) is considered. Auciello and De Rosa [1] have used CDM to obtain the fundamental natural frequency of such a circular arch. They have employed the inextensible theory. They have argued their method yields a lower bound for the fundamental natural frequency. Here, the same problem is examined under a wide range of rotational stiffnesses $K_{T}\left(=k_{t} R / E I_{o}\right)$ and opening angles. At both ends the torsional stiffness is chosen to be equal. The results are shown in Table 8. For all cases, the results of present analysis are slightly greater than those of CDM but slightly less than those of the Galerkin method [1]. It should be noted here, that in general, the Galerkin method would not result in upper bound values for natural frequencies.

5.6. Analysis of uniform circular arch under "approximate theory" assumption

The accuracy of the present method for solving the governing equation of 'approximate theory' is demonstrated through the solutions for nondimensionalized natural frequencies of a uniform

Table 10
Non-dimensional natural frequencies for a symmetric tapered arch under different boundary conditions and with different opening angles

	$\alpha=0.1$		$\alpha=0.2$		$\alpha=0.3$	
	Present	GDQR [15]	Present	GDQR [15]	Present	GDQR [15]
$\mathrm{C}-\mathrm{C}\left(\lambda_{1}\right)$						
$\theta_{o}=10^{\circ}$	2149.7594	2149.7593	2275.3958	2275.3957	2399.1619	2399.1619
20°	535.4500	535.4500	566.8193	566.8193	597.7229	597.7229
30°	236.5183	236.5183	250.3404	250.3404	264.1372	264.1371
40°	131.9088	131.9088	139.7107	139.7107	147.3984	147.3984
50°	83.5073	83.5073	88.4809	88.4809	93.3824	93.3824
$\mathrm{C}-\mathrm{C}\left(\lambda_{2}\right)$						
$\theta_{o}=10^{\circ}$	3858.7878	3859.2373	4073.3759	4073.8708	4285.6463	4286.188
20°	963.4028	963.4309	1017.0119	1017.0424	1070.0422	1070.0756
30°	427.1678	427.1733	450.9602	450.9661	474.4959	474.5023
40°	239.4849	239.4866	252.8411	252.8428	266.0533	266.0552
50°	152.6174	152.6181	161.1432	161.1439	169.5771	169.5779
S-S (λ_{1})						
$\theta_{o}=10^{\circ}$	1357.2106	1357.2106	1419.0535	1419.0535	1479.2608	1479.2608
20°	337.8891	337.8891	352.7986	352.7986	367.8006	367.8006
30°	148.5490	148.5490	155.3598	155.3598	161.9904	161.9904
40°	82.4735	82.4735	86.2745	86.2745	89.9750	89.9750
50°	51.9099	51.9095	54.3172	54.3172	56.6613	56.6613
S-S (λ_{2})						
$\theta_{o}=10^{\circ}$	2913.1934	2913.2945	3058.8290	3058.9326	3202.7096	3202.8152
20°	726.8991	726.9054	763.2511	763.2575	799.1647	799.1712
30°	322.0205	322.0217	338.1346	338.1359	354.0541	354.0553
40°	180.3159	180.3163	189.3468	189.3472	198.2685	198.2689
50°	114.7310	114.7310	120.4834	120.4836	126.1649	126.1664

Fig. 3. Ring with a parabolic variable thickness: (a) simply supported, (b) completely free ring.
circular arch under different opening angles and under different boundary conditions as presented in Table 9. These results for the first ten natural frequencies are compared with the exact solutions [5] as well as another DQ solution [6]. Thirty grid points were employed to obtain results

Fig. 4. Unsymmetric arch.

Fig. 5. Arch with ends elastically restrained against rotation.
converged to five significant digits. Excellent agreements are achieved in comparison with the exact solutions both for shallow and deep arches.

5.7. Symmetric tapered and unsymmetric stepped arches

To assess, and to demonstrate implementation of the domain decomposition scheme in conjunction with the present DQ methodology for the problems having sudden changes in geometrical cross-section, two examples are considered. In the first example, a symmetric tapered arch, as shown in Fig. 6, under different tapered angle, under two different boundary condition types and at different values for the opening angle is considered. The cross-sectional height varies as

$$
h(x)= \begin{cases}h_{o}[1-\alpha(2 x-1)], & \text { when } 0 \leqslant x \leqslant 1 / 2 \\ h_{o}[1+\alpha(2 x-1)], & \text { when } 1 / 2 \leqslant x \leqslant 1\end{cases}
$$

This problem has also been studied by Liu and Wu [15] who solved it by GDQR. The results for the first two natural frequencies, using $N=14$, are shown in Table 10 and compared with those of Liu and Wu [15].

In another example, a stepped circular arch, as shown in Fig. 7, with $h_{2} / h_{1}=1.25$ is considered. The results of Liu and Wu [15] and Tong et al. [2] are also cited for comparison in Table 11. For the analysis at each sub-domain 14 grid points are used. Excellent agreements are achieved among the different solution procedures.

Fig. 6. Symmetric tapered arch.

Fig. 7. Unsymmetric stepped arch.

6. Conclusions

A general and a computationally efficient DQ solution method for in-plane free vibration analysis of variable section circular arches was presented. In an improvement to the analysis of circular arches, the inextensibility condition assumption was removed. Circular arches under different types of classical boundary conditions, and also with edges elastically restrained against rotation, were examined for shallow as well as deep arches. The DQ solution to the governing equations under "approximate theory" was also developed and examined. The domain decomposition technique in conjunction with DQM was also incorporated for arches with change in their geometry or material properties. The effects of slenderness ratio and the rotary inertia on the solutions were also examined. Employing the algorithm, different examples were analyzed to verify the accuracy and applicability of the methodology. It can be concluded that the present methodology can also be used as an alternative and efficient tool for the solution to similar problems in solid mechanics analysis.

Appendix A. Evaluation of weighting coefficients

According to DQM, the m th order derivative of a field variable $u(x, t)$ with respect to x at an arbitrary point x_{i} is approximated by

$$
\begin{equation*}
\left.\frac{\partial^{m} u}{\partial x^{m}}\right|_{x_{i}}=\sum_{j=1}^{N} A_{i j}^{(m)} u\left(x_{j}, t\right) \tag{A.1}
\end{equation*}
$$

Table 11
Non-dimensional natural frequencies $\left(\lambda_{i}\right)$ for an unsymmetric stepped arch under different boundary conditions and with different opening angles

	Mode sequences							
	1			2		3 Present	4 Present	5 Present
	Present	GDQR [15]	Ref. [2]	Present	GDQR [15]			
(a) S-S								
$\theta_{o}=10^{\circ}$	1458.837	1458.838	1458.852	3054.560	3054.689	5823.40	8791.24	13077.04
20°	362.6133	362.6133	362.609	762.165	762.173	1453.76	2196.48	3267.18
30°	159.6269	159.6269	159.625	337.6350	337.6366	644.576	975.096	1450.54
40°	88.6024	88.6024	88.601	189.0526	189.0531	361.376	547.605	814.736
50°	55.7503	55.7503	55.750	120.2845	120.2847	230.310	349.738	520.460
60°	37.9269	37.9269	37.926	82.9337	82.9338	159.128	242.256	360.620
70°	27.2019	27.2019		60.4173	60.4173	116.222	177.451	264.255
80°	20.2622	20.2622		45.8081	45.8082	88.3879	135.392	201.723
(b) $\mathrm{C}-\mathrm{S}$								
$\theta_{o}=10^{\circ}$	1853.704	1853.704	1853.663	3538.327	3538.337	6563.38	9624.97	14165.8
20°	461.3518	461.3518	461.342	883.072	883.07	1638.56	2405.02	3539.12
30°	203.5249	203.5249	203.520	391.3581	391.3579	726.571	1067.74	1571.23
40°	113.3039	113.3039	113.014	219.2632	219.2635	407.389	599.679	882.482
50°	71.5644	71.5644	71.563	139.6135	139.6136	259.671	383.033	563.709
60°	48.9112	48.9112	48.910	96.3523	96.3524	179.447	265.351	390.565
70°	35.2721	35.2721		70.2727	70.2727	131.091	194.396	286.182
80°	26.4394	26.4394		53.3516	53.3515	99.7225	148.346	218.445
(c) $\mathrm{C}-\mathrm{C}$								
$\theta_{o}=10^{\circ}$	2277.434	2277.436	2277.412	4027.230	4027.767	7366.079	10494.09	15339.85
20°	567.1737	567.1738	567.170	1005.440	1005.474	1839.008	2622.562	3832.345
30°	250.4748	250.4748	250.472	445.7867	445.7933	815.4926	1164.457	1701.336
40°	139.6489	139.6489	139.647	249.9069	249.909	457.2812	654.0919	955.5034
50°	88.3724	88.3724	88.372	159.2458	159.2467	291.5007	417.8631	610.3108
60°	60.5389	60.5389	60.538	110.0019	110.0024	201.4672	289.5425	422.8204
70°	43.7766	43.7766		80.3138	80.3141	161.9572	212.1714	309.7906
80°	32.9173	32.9173		61.0496	61.0498	127.5332	161.9572	236.4499

where $A_{i j}^{(m)}$ are the weighting coefficients associated with the m th order derivative and N is the number of grid points in the x direction. The weighting coefficients of the first order derivatives are determined according to [7]

$$
A_{i j}^{(1)}= \begin{cases}\frac{M^{(1)}\left(x_{i}\right)}{\left(x_{i}-x_{j}\right) M^{(1)}\left(x_{j}\right)} & \text { for } i \neq j, \tag{A.2}\\ -\sum_{\substack{j=1 \\ i \neq j}}^{N} A_{i j}^{(1)} & \text { for } i=j ; i, j=1,2, \ldots, N,\end{cases}
$$

where $M(x)$ is defined as

$$
\begin{equation*}
M(x)=\prod_{j=1}^{N}\left(x-x_{j}\right) \tag{A.3}
\end{equation*}
$$

$M^{(1)}(x)$ is the first order derivative of the function, $M(x)$:

$$
\begin{equation*}
M^{(1)}\left(x_{i}\right)=\prod_{j=1, j \neq i}^{N}\left(x_{i}-x_{j}\right) \tag{A.4}
\end{equation*}
$$

In order to evaluate the weighting coefficients of higher order derivatives, recurrence relations may be employed,

$$
A_{i j}^{(r)}= \begin{cases}r\left[A_{i i}^{(r-1)} A_{i j}^{(1)}-\frac{A_{i j}^{(r-1)}}{x_{i}-x_{j}}\right], & i \neq j, \tag{A.5}\\ -\sum_{\substack{j=1 \\ i \neq j}}^{N} A_{i j}^{(1)}, & i=j ; \text { for } i, j=1,2, \ldots, N \text { and } r=2,3, \ldots, N-1\end{cases}
$$

For simplicity, we use the notations

$$
\begin{equation*}
A_{i j}=A_{i j}^{(1)}, \quad B_{i j}=A_{i j}^{(2)} \tag{A.6}
\end{equation*}
$$

In this paper the grid points are located at the so-called Gauss-Lobatto-Chebyshev points,

$$
\begin{equation*}
x_{i}=\frac{1}{2}\left[1-\cos \left[\frac{(i-1) \pi}{(N-1)}\right]\right] \tag{A.7}
\end{equation*}
$$

References

[1] N.M. Auciello, M.A. De Rosa, Free vibration of circular arches: a review, Journal of Sound and Vibration 176 (1994) 433-458.
[2] X. Tong, N. Mrad, B. Tabarrok, In-plane vibration of circular arches with variable cross section, Journal of Sound and Vibration 212 (1998) 121-140.
[3] A.S. Veletsos, W.J. Austin, C.A.L. Pereira, S.J. Wung, Free in-plane vibration of circular arches, Journal of Engineering Mechanics 98 (1972) 311-329.
[4] W.J. Austin, A.S. Veletsos, Free vibration of arches flexible in shear, Journal of Engineering Mechanics 99 (1973) 735-753.
[5] J. Henrych, The Dynamics of Arches and Frames, Elsevier, Amsterdam, 1981.
[6] M.A. De Rosa, C. Franciosi, Exact and approximate dynamic analysis of circular arches using DQM, International Journal of Solids and Structures 37 (2000) 1103-1117.
[7] C.W. Bert, M. Malik, The differential quadrature method in computational mechanics: a review, Applied Mechanics Reviews 49 (1996) 1-27.
[8] G. Karami, P. Malekzadeh, A new differential quadrature methodology for beam analysis and the associated DQEM, Computer Methods in Applied Mechanics and Engineering 191 (2002) 3509-3526.
[9] G. Karami, P. Malekzadeh, Application of a new differential quadrature methodology for free vibration analysis of plates, International Journal for Numerical Methods in Engineering 56 (2003) 847-868.
[10] G. Karami, P. Malekzadeh, An efficient differential quadrature methodology for free vibration analysis of arbitrary straight-sided quadrilateral thin plates, Journal of Sound and Vibration 263 (2) (2003) 415-442.
[11] R.H. Gutierrez, P.A.A. Laura, Vibrations of non-uniform rings studied by means of the differential quadrature method, Journal of Sound and Vibration 185 (1995) 507-513.
[12] K. Kang, C.W. Bert, A.G. Striz, Vibration and buckling analysis of circular arches using DQM, Computers and Structures 60 (1996) 49-57.
[13] K. Kang, C.W. Bert, A.G. Striz, Vibration analysis of horizontally curved beams with warping using DQM, Journal of Structural Engineering 122 (1996) 657-662.
[14] K. Kang, C.W. Bert, A.G. Striz, Vibration analysis of shear deformable circular arches by the differential quadrature method, Journal of Sound and Vibration 181 (1995) 353-360.
[15] G.R. Liu, T.Y. Wu, In-plane vibration analysis of circular arches by the generalized differential quadrature method, International Journal of Mechanical Science 43 (2001) 2597-2611.
[16] K.M. Liew, F.-L. Liu, Differential quadrature method for vibration analysis of shear deformable annular sector plates, Journal of Sound and Vibration 230 (2000) 335-356.
[17] M. Liew, K. Han, J.-B.M. Xiao, Differential quadrature method for thick symmetric cross-ply laminates with first-order shears flexibility, International Journal of Solids and Structures 33 (1996) 2647-2658.
[18] H. Du, K.M. Liew, M.K. Lim, Generalized differential quadrature method for buckling analysis, ASCE Journal of Engineering Mechanics 122 (1996) 95-100.

[^0]: *Corresponding author.
 E-mail address: G.Karami@ndsu.nodak.edu (G. Karami).

